RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik YuUrGU. Ser. Mat. Model. Progr., 2016, Volume 9, Issue 1, Pages 20–31 (Mi vyuru299)  

This article is cited in 3 scientific papers (total in 3 papers)

Mathematical Modelling

On fixed point theory and its applications to equilibrium models

D. A. Serkovab

a Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation
b Krasovskii Institute of Mathematics and Mechanics

Abstract: For a given set and a given (generally speaking, multivalued) mapping of this set into itself, we study the problem on the existence of fixed points of this mapping, i.e., of points contained in their images. We assume that the given set is nonempty and the given mapping is defined on the entire set. In these conditions, we give the description (redefinition) of the set of fixed points in the set-theoretic terms. This general idea is concretized for cases where the set is endowed with a topological structure and the mapping has additional properties associated with this structure. In particular, we provide necessary and sufficient conditions for the existence of fixed points of mappings with closed graph in Hausdorff topological spaces as well as in metric spaces. An example illustrating the possibilities and advantages of the proposed approach is given. The immediate applications of these results to the search of equilibrium states in game problems are also given: we describe the sets of saddle points in the minimax problem (an analogue of the Fan theorem) and of Nash equilibrium points in the game with many participants in cases where the sets of strategies of players are Hausdorff spaces or metrizable topological spaces.

Keywords: multivalued mapping; fixed point; saddle point; Nash equilibrium.

DOI: https://doi.org/10.14529/mmp160102

Full text: PDF file (479 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.952+517.977
MSC: 47H10, 54C10, 54E45, 91B50
Received: 30.06.2015
Language:

Citation: D. A. Serkov, “On fixed point theory and its applications to equilibrium models”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:1 (2016), 20–31

Citation in format AMSBIB
\Bibitem{Ser16}
\by D.~A.~Serkov
\paper On fixed point theory and its applications to equilibrium models
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2016
\vol 9
\issue 1
\pages 20--31
\mathnet{http://mi.mathnet.ru/vyuru299}
\crossref{https://doi.org/10.14529/mmp160102}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000371348500002}
\elib{http://elibrary.ru/item.asp?id=25717230}


Linking options:
  • http://mi.mathnet.ru/eng/vyuru299
  • http://mi.mathnet.ru/eng/vyuru/v9/i1/p20

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. A. Serkov, “Ob odnom podkhode k analizu mnozhestva istinnosti: razmykanie predikata”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 26:4 (2016), 525–534  mathnet  crossref  mathscinet  elib
    2. D. A. Serkov, “Unlocking of predicate: application to constructing a non-anticipating selection”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:2 (2017), 283–291  mathnet  crossref  elib
    3. D. A. Serkov, “K postroeniyu mnozhestva istinnosti predikata”, Izv. IMI UdGU, 50 (2017), 45–61  mathnet  crossref  elib
  • Number of views:
    This page:121
    Full text:40
    References:46

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019