RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik YuUrGU. Ser. Mat. Model. Progr., 2016, Volume 9, Issue 3, Pages 130–136 (Mi vyuru335)  

Short Notes

Two-level optimization of sensors reposition

E. E. Ivankoab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russian Federation
b Ural Federal University, Ekaterinburg, Russian Federation

Abstract: The problem of optimal measurements planning with regularly repositioning sensors is considered. This abstract problem may serve as a mathematical model for a variety of different applied problems connected with cost optimization in the experiments where sensors are used for the estimation of the environment parameters. There are two levels of optimization in the considered problem: movement optimization in the process of sensors reposition from one group of points to another and order optimization in which the groups of positions follow each other. The exact solution of the two-level problem is proposed and supported by the results of computation experiment.

Keywords: sensors reposition; route optimization; traveling salesman problem; linear order.

DOI: https://doi.org/10.14529/mmp160311

Full text: PDF file (1090 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 519.8
MSC: 90B06
Received: 21.12.2015

Citation: E. E. Ivanko, “Two-level optimization of sensors reposition”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:3 (2016), 130–136

Citation in format AMSBIB
\Bibitem{Iva16}
\by E.~E.~Ivanko
\paper Two-level optimization of sensors reposition
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2016
\vol 9
\issue 3
\pages 130--136
\mathnet{http://mi.mathnet.ru/vyuru335}
\crossref{https://doi.org/10.14529/mmp160311}
\elib{http://elibrary.ru/item.asp?id=26563758}


Linking options:
  • http://mi.mathnet.ru/eng/vyuru335
  • http://mi.mathnet.ru/eng/vyuru/v9/i3/p130

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:72
    Full text:20
    References:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020