RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik YuUrGU. Ser. Mat. Model. Progr., 2016, Volume 9, Issue 3, Pages 137–143 (Mi vyuru336)  

Short Notes

Finding of values for sums of functional Rayleigh–Schrodinger series for perturbed self-adjoint operators

S. I. Kadchenkoab, S. N. Kakushkina

a South Ural State University, Chelyabinsk, Russian Federation
b Nosov Magnitogorsk State Technical University, Magnitogorsk

Abstract: Authors of the article developed non-iteration method for calculating the values of eigenfunctions for perturbed self-adjoint operators, namely the method of regularized traces (RT). It allows to find the values of eigenfunctions of perturbed operators aware the spectral characteristics of unperturbed operator and the eigenvalues of the perturbed operator. In contrast to the known methods of finding the eigenfunctions, the RT method does not use the matrix, and the values of eigenfunctions are searched by linear formulas. This greatly increases its computational efficiency compared with classical methods. For application of the RT method in practice one should be able to summarize the functional Rayleigh–Schrodinger series of perturbed discrete operators. Previously authors obtained formulas for finding the "weighted" corrections of the perturbation theory, that allowed to approximate the sum of functional Rayleigh–Schrodinger series, by partial sums consisting of these corrections. In the article formulas for finding the values of sums of functional Rayleigh–Schrodinger series of perturbed discrete operators in the the nodal points were obtained. Computational experiments for finding the values of the eigenfunctions of the perturbed one-dimensional Laplace operator were conducted. The results of the experiment showed the high computational efficiency of this method of summation of the Rayleigh–Schrodinger series.

Keywords: perturbed operators; eigenvalues, eigenfunctions; multiple spectrum; the sum of functional Rayleigh–Schrodinger series, "weighted" corrections of the perturbation theory.

DOI: https://doi.org/10.14529/mmp160312

Full text: PDF file (495 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 519.624.3
MSC: 47A10
Received: 28.01.2016

Citation: S. I. Kadchenko, S. N. Kakushkin, “Finding of values for sums of functional Rayleigh–Schrodinger series for perturbed self-adjoint operators”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:3 (2016), 137–143

Citation in format AMSBIB
\Bibitem{KadKak16}
\by S.~I.~Kadchenko, S.~N.~Kakushkin
\paper Finding of values for sums of functional Rayleigh--Schrodinger series for perturbed self-adjoint operators
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2016
\vol 9
\issue 3
\pages 137--143
\mathnet{http://mi.mathnet.ru/vyuru336}
\crossref{https://doi.org/10.14529/mmp160312}
\elib{http://elibrary.ru/item.asp?id=25717244}


Linking options:
  • http://mi.mathnet.ru/eng/vyuru336
  • http://mi.mathnet.ru/eng/vyuru/v9/i3/p137

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:97
    Full text:22
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020