RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik YuUrGU. Ser. Mat. Model. Progr., 2016, Volume 9, Issue 3, Pages 144–151 (Mi vyuru337)  

This article is cited in 2 scientific papers (total in 2 papers)

Short Notes

Discontinuous finite-element Galerkin method for numerical solution of parabolic problems in anisotropic media on triangle grids

R. V. Zhalnina, M. E. Ladonkinab, V. F. Masyagina, V. F. Tishkinb

a Ogarev Mordovia State University, Saransk, Russian Federation
b Keldysh Institute of Applied Mathematics of RAS, Moscow, Russian Federation

Abstract: A new numerical algorithm for solving parabolic initial-boundary values problems in anisotropic media is proposed. The algorithm is based on Galerkin method with discontinuous basic functions on triangle meshes. The 2nd order derivatives can't be directly harmonized in a weak variational formulation using the discontinuous functions' space. Hence additional variables are introduced to reduce the initial 2nd-order equation to the system of the 1st-order equations. The special feature of this method is in consideration of additional variables within a dual mesh. The dual mesh consists of median control values and is conjugate to the initial triangle mesh. The stream values on the element boundaries are calculated with addition of stabilizing additives. The method is studied basing on the example of 2-dimensional parabolic boundary problems. Convergence and accuracy of the method are investigated. Calculations in model problem show the possibility to use the method discussed for solving parabolic problems in anisotropic media on triangle meshes.

Keywords: parabolic equations, anisotropic media, discontinuous Galerkin method, сonvergence and accuracy of the method.

DOI: https://doi.org/10.14529/mmp160313

Full text: PDF file (440 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 519.633
MSC: 35-04
Received: 21.09.2015

Citation: R. V. Zhalnin, M. E. Ladonkina, V. F. Masyagin, V. F. Tishkin, “Discontinuous finite-element Galerkin method for numerical solution of parabolic problems in anisotropic media on triangle grids”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:3 (2016), 144–151

Citation in format AMSBIB
\Bibitem{ZhaLadMas16}
\by R.~V.~Zhalnin, M.~E.~Ladonkina, V.~F.~Masyagin, V.~F.~Tishkin
\paper Discontinuous finite-element Galerkin method for numerical solution of parabolic problems in anisotropic media on triangle grids
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2016
\vol 9
\issue 3
\pages 144--151
\mathnet{http://mi.mathnet.ru/vyuru337}
\crossref{https://doi.org/10.14529/mmp160313}
\elib{http://elibrary.ru/item.asp?id=26563760}


Linking options:
  • http://mi.mathnet.ru/eng/vyuru337
  • http://mi.mathnet.ru/eng/vyuru/v9/i3/p144

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. B. Petrov, “Problemy modelirovaniya prirodnykh i antropogennykh protsessov v Arkticheskoi zone Rossiiskoi Federatsii”, Matem. modelirovanie, 30:7 (2018), 103–136  mathnet
    2. R. V. Zhalnin, V. F. Masyagin, “Apriornye otsenki dlya metoda Galerkina s razryvnymi bazisnymi funktsiyami na raznesennykh setkakh dlya odnorodnoi zadachi Dirikhle”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11:2 (2018), 29–43  mathnet  crossref  elib
  • Number of views:
    This page:206
    Full text:79
    References:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019