RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik YuUrGU. Ser. Mat. Model. Progr., 2016, Volume 9, Issue 4, Pages 17–29 (Mi vyuru340)  

Mathematical Modelling

Asymptotic estimate of a Petrov–Galerkin method for nonlinear operator-differential equation

P. V. Vinogradova, A. M. Samusenko, I. S. Manzhula

Far Eastern State Transport University, Khabarovsk, Russian Federation

Abstract: In the current paper, we study a Petrov–Galerkin method for a Cauchy problem for an operator-differential equation with a monotone operator in a separable Hilbert space. The existence and the uniqueness of a strong solution of the Cauchy problem are proved. New asymptotic estimates for the convergence rate of approximate solutions are obtained in uniform topology. The minimal requirements to the operators of the equation were demanded, which guaranteed the convergence of the approximate solutions. There were no assumptions of the structure of the operators. Therefore, the method, specified in this paper, can be applied to a wide class of the parabolic equations as well as to the integral-differential equations. The initial boundary value problem for nonlinear parabolic equations of the fourth order on space variables was considered as the application.

Keywords: Cauchy problem; operator-differential equation; Petrov–Galerkin method; orthogonal projection; convergence rate.

DOI: https://doi.org/10.14529/mmp160402

Full text: PDF file (471 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.9+517.6
MSC: 12H20, 65L60, 93A30
Received: 04.06.2016
Language:

Citation: P. V. Vinogradova, A. M. Samusenko, I. S. Manzhula, “Asymptotic estimate of a Petrov–Galerkin method for nonlinear operator-differential equation”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:4 (2016), 17–29

Citation in format AMSBIB
\Bibitem{VinSamMan16}
\by P.~V.~Vinogradova, A.~M.~Samusenko, I.~S.~Manzhula
\paper Asymptotic estimate of a Petrov--Galerkin method for nonlinear operator-differential equation
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2016
\vol 9
\issue 4
\pages 17--29
\mathnet{http://mi.mathnet.ru/vyuru340}
\crossref{https://doi.org/10.14529/mmp160402}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000390883900002}
\elib{http://elibrary.ru/item.asp?id=27318762}


Linking options:
  • http://mi.mathnet.ru/eng/vyuru340
  • http://mi.mathnet.ru/eng/vyuru/v9/i4/p17

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:77
    Full text:25
    References:30

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019