Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik YuUrGU. Ser. Mat. Model. Progr., 2016, Volume 9, Issue 4, Pages 86–95 (Mi vyuru346)  

This article is cited in 1 scientific paper (total in 1 paper)

Programming & Computer Software

Modification of random forest based approach for streaming data with concept drift

A. V. Zhukova, D. N. Sidorovbca

a Institute of Mathematisc, Economics and Computer Science, Irkutsk State University, Irkutsk, Russian Federation
b Melentiev Energy Systems Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, Russian Federation
c Irkutsk National Research Technical University, Irkutsk, Russian Federation

Abstract: In this paper concept drift classification method was presented. Concept drift methods have potential in complex systems analysis and other processes which have stochastic nature like wind power. We present decision tree ensemble classification method based on the Random Forest algorithm for concept drift. Inspired by Accuracy Weighted Ensemble (AWE) method the weighted majority voting ensemble aggregation rule is employed. Base learner weight in our case is computed for each sample evaluation using base learners accuracy and intrinsic proximity measure of Random Forest. Our algorithm exploits ensemble pruning as a forgetting strategy. We present results of empirical comparison of our method and other state-of-the-art concept drift classifiers.

Keywords: decision tree; concept drift; ensemble learning; classification; random forest.

Funding Agency Grant Number
Russian Science Foundation 14-19-00054


DOI: https://doi.org/10.14529/mmp160408

Full text: PDF file (611 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 004.855.5
MSC: 68T05
Received: 27.05.2016

Citation: A. V. Zhukov, D. N. Sidorov, “Modification of random forest based approach for streaming data with concept drift”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:4 (2016), 86–95

Citation in format AMSBIB
\Bibitem{ZhuSid16}
\by A.~V.~Zhukov, D.~N.~Sidorov
\paper Modification of random forest based approach for streaming data with concept drift
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2016
\vol 9
\issue 4
\pages 86--95
\mathnet{http://mi.mathnet.ru/vyuru346}
\crossref{https://doi.org/10.14529/mmp160408}
\elib{https://elibrary.ru/item.asp?id=27318769}


Linking options:
  • http://mi.mathnet.ru/eng/vyuru346
  • http://mi.mathnet.ru/eng/vyuru/v9/i4/p86

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. I. Voropai, N. V. Tomin, D. N. Sidorov, V. G. Kurbatsky, D. A. Panasetsky, A. V. Zhukov, D. N. Efimov, A. B. Osak, “A suite of intelligent tools for early detection and prevention of blackouts in power interconnections”, Autom. Remote Control, 79:10 (2018), 1741–1755  mathnet  crossref  isi  elib
  • Number of views:
    This page:194
    Full text:56
    References:32

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021