RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik YuUrGU. Ser. Mat. Model. Progr., 2017, Volume 10, Issue 3, Pages 148–155 (Mi vyuru394)  

This article is cited in 1 scientific paper (total in 1 paper)

Short Notes

Computer simulation of the Volga river hydrological regime: problem of water-retaining dam optimal location

E. O. Agafonnikova, A. Yu. Klikunova, A. V. Khoperskov

Volgograd State University, Volgograd, Russian Federation

Abstract: We investigate of a special dam optimal location at the Volga river in the area of the Akhtuba left sleeve beginning (7 km to the south of the Volga Hydroelectric Power Station dam). We claim that a new water-retaining dam can resolve the key problem of the Volga-Akhtuba floodplain related to insufficient water amount during spring floodings due to the overregulation of the Lower Volga. Using a numerical integration of Saint-Vanant equations we study the water dynamics across the northern part of the Volga-Akhtuba floodplain taking into account its actual topography. As the result we found an amount of water $V_A$ passing to the Akhtuba during spring period for a given water flow through the Volga Hydroelectric Power Station (so-called hydrograph which characterises the water flow per unit of time). By varying the location of the water-retaining dam $ x_d, y_d $ we obtained various values of $V_A (x_d, y_d) $ as well as various flow spatial structure on the territory during the flood period. Gradient descent method provides the dam coordinated with the maximum value of ${V_A}$. Such approach to the dam location choice let us find the best solution, that the value $V_A$ increases by a factor of 2. Our analysis demonstrates a good potential of the numerical simulations in the field of hydraulic works.

Keywords: hydrodynamic simulation; Saint-Venant equations; numerical model; optimization; hydrology.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 2.852.2017/4.6
Russian Foundation for Basic Research 16-07-01037
15-45-02655
We are thankful to the Ministry of Education and Science of the Russian Federation (project 2.852.2017/4.6). The study was supported by the Supercomputing Center of Lomonosov Moscow State University. EOA is thankful to the RFBR (grants 16-07-01037, 15-45-02655).


DOI: https://doi.org/10.14529/mmp170313

Full text: PDF file (1606 kB)
References: PDF file   HTML file

Bibliographic databases:

MSC: 82D15, 76A20, 76M25
Received: 10.04.2017
Language:

Citation: E. O. Agafonnikova, A. Yu. Klikunova, A. V. Khoperskov, “Computer simulation of the Volga river hydrological regime: problem of water-retaining dam optimal location”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:3 (2017), 148–155

Citation in format AMSBIB
\Bibitem{AgaKliKho17}
\by E.~O.~Agafonnikova, A.~Yu.~Klikunova, A.~V.~Khoperskov
\paper Computer simulation of the Volga river hydrological regime: problem of water-retaining dam optimal location
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2017
\vol 10
\issue 3
\pages 148--155
\mathnet{http://mi.mathnet.ru/vyuru394}
\crossref{https://doi.org/10.14529/mmp170313}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000418233500013}
\elib{http://elibrary.ru/item.asp?id=29930365}


Linking options:
  • http://mi.mathnet.ru/eng/vyuru394
  • http://mi.mathnet.ru/eng/vyuru/v10/i3/p148

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. T. A. Dyakonova, “Metod otsenki effektivnogo koeffitsienta sherokhovatosti v meandrirovannykh ruslakh na osnove chislennogo modelirovaniya”, Matematicheskaya fizika i kompyuternoe modelirovanie, 21:1 (2018), 64–69  mathnet  crossref
  • Number of views:
    This page:203
    Full text:17
    References:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020