RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik YuUrGU. Ser. Mat. Model. Progr., 2018, Volume 11, Issue 4, Pages 161–168 (Mi vyuru465)  

Short Notes

About nonuniqueness of solutions of the Showalter–Sidorov problem for one mathematical model of nerve impulse spread in membrane

N. A. Manakova, O. V. Gavrilova

South Ural State University, Chelyabinsk, Russian Federation

Abstract: The article is devoted to the study of the morphology of the phase space of a mathematical model of the nerve impulse spread in a membrane, based on a degenerate Fitz Hugh–Nagumo system, defined on a bounded domain with a smooth boundary. In this mathematical model, the rate of change of one of the components of the system can significantly exceed the other, which leads to a degenerate Fitz Hugh–Nagumo system. The model under inquiry belongs to a wide class of semilinear Sobolev type models. To research the problem of nonuniqueness of solutions of the Showalter–Sidorov problem, the phase space method will be used, which was developed by G.A. Sviridyuk to scrutinize the solvability of Sobolev type equations. We have shown that the phase space of the studied model contains singularity such as the Whitney fold. The conditions of existence, uniqueness or multiplicity of solutions of the Showalter–Sidorov problem depending on the parameters of the system are found.

Keywords: Sobolev type equations, Showalter–Sidorov problem, Fitz Hugh–Nagumo system, nonuniqueness of the solution.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 02.A03.21.0011
The work was supported by Act 211 Government of the Russian Federation, contract no. 02.A03.21.0011.


DOI: https://doi.org/10.14529/mmp180413

Full text: PDF file (304 kB)
References: PDF file   HTML file

UDC: 517.9
MSC: 60H30
Received: 15.05.2018
Language:

Citation: N. A. Manakova, O. V. Gavrilova, “About nonuniqueness of solutions of the Showalter–Sidorov problem for one mathematical model of nerve impulse spread in membrane”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018), 161–168

Citation in format AMSBIB
\Bibitem{ManGav18}
\by N.~A.~Manakova, O.~V.~Gavrilova
\paper About nonuniqueness of solutions of the Showalter--Sidorov problem for one mathematical model of nerve impulse spread in membrane
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2018
\vol 11
\issue 4
\pages 161--168
\mathnet{http://mi.mathnet.ru/vyuru465}
\crossref{https://doi.org/10.14529/mmp180413}
\elib{http://elibrary.ru/item.asp?id=36487062}


Linking options:
  • http://mi.mathnet.ru/eng/vyuru465
  • http://mi.mathnet.ru/eng/vyuru/v11/i4/p161

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:31
    Full text:12
    References:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020