RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik YuUrGU. Ser. Mat. Model. Progr., 2019, Volume 12, Issue 1, Pages 129–136 (Mi vyuru477)  

Short Notes

Neural net decoders for linear block codes

V. N. Dumachev, A. N. Kopylov, V. V. Butov

Voronezh Institute of the Ministry of Internal Affairs of Russia, Voronezh, Russian Federation

Abstract: The work is devoted to neural network decoders of linear block codes. Analytical methods for calculating synaptic weights based on a generator and parity-check matrices are considered. It is shown that to build a neural net decoder based on a parity-check matrix was sufficiently four layers feedforward neural net. The activation functions and weight matrices for each layer are determined, as well as the number of weights for the neural net decoder. An example of error correction with uses of the BCH neural net decoder is considered. As a special case of a neural network decoder built on the basis of a parity-check matrix, a model for decoding Hamming codes has been proposed. This is the two-layer feedforward neural net for with a neuron number equal to the length of the codeword and a number of weight coefficients equal to the square of the codeword length. The graphs of the number of a synaptic weight of neural net decoders based on the generator and parity-check matrices, on the number of bits and the number of corrected errors, are shown.

Keywords: error-correction codes, neural network decoders, neural network classification.

DOI: https://doi.org/10.14529/mmp190111

Full text: PDF file (303 kB)
References: PDF file   HTML file

UDC: 004.032.26
MSC: 68T05
Received: 12.07.2018
Language:

Citation: V. N. Dumachev, A. N. Kopylov, V. V. Butov, “Neural net decoders for linear block codes”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 129–136

Citation in format AMSBIB
\Bibitem{DumKopBut19}
\by V.~N.~Dumachev, A.~N.~Kopylov, V.~V.~Butov
\paper Neural net decoders for linear block codes
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2019
\vol 12
\issue 1
\pages 129--136
\mathnet{http://mi.mathnet.ru/vyuru477}
\crossref{https://doi.org/10.14529/mmp190111}
\elib{http://elibrary.ru/item.asp?id=37092211}


Linking options:
  • http://mi.mathnet.ru/eng/vyuru477
  • http://mi.mathnet.ru/eng/vyuru/v12/i1/p129

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:42
    Full text:23
    References:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019