Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik YuUrGU. Ser. Mat. Model. Progr., 2020, Volume 13, Issue 4, Pages 19–32 (Mi vyuru568)  

Mathematical Modelling

Solution of inverse spectral problems for discrete semi-bounded operators given on geometric graphs

S. I. Kadchenkoa, A. V. Purshevab, L. S. Ryazanovaa

a Nosov Magnitogorsk State Technical University, Magnitogorsk, Russian Federation
b CJSC “Ural-Omega”, Magnitogorsk, Russian Federation

Abstract: Using the numerical method of regularized traces and the Galerkin method, linear formulas were previously obtained for calculating the approximate eigenvalues of discrete semi-bounded operators. These formulas can be used to find approximate eigenvalues of discrete operators with any ordinal number without using the previous eigenvalues. It removes many of the computational difficulties arising in other methods. The comparison of the results of computational experiments showed that the eigenvalues found by both linear formulas and the Galerkin method are in a good agreement. On the basis of linear formulas for calculating the eigenvalues of discrete semi-bounded operators, we describe a numerical method for solving inverse spectral problems given on sequential geometric graphs with a finite number of links. The method allows to recover the values of unknown functions included in the operators at the discretization nodes using the eigenvalues of the operators and the spectral characteristics of the corresponding self-adjoint operators. We construct an algorithm for solving inverse spectral problems given on sequential geometric graphs with a finite number of links, and test the algorithm on a sequential two-edge graph. The results of numerous experiments shown good accuracy and a high computational efficiency of the developed method.

Keywords: eigenvalues and eigenfunctions, discrete and self-adjoint operators, inverse spectral problem, Galerkin method, ill-posed problems, Fredholm integral equation of the first kind, geometric graph.

DOI: https://doi.org/10.14529/mmp200402

Full text: PDF file (248 kB)
References: PDF file   HTML file

UDC: 517.984
MSC: 47A75
Received: 16.08.2020

Citation: S. I. Kadchenko, A. V. Pursheva, L. S. Ryazanova, “Solution of inverse spectral problems for discrete semi-bounded operators given on geometric graphs”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020), 19–32

Citation in format AMSBIB
\Bibitem{KadPurRya20}
\by S.~I.~Kadchenko, A.~V.~Pursheva, L.~S.~Ryazanova
\paper Solution of inverse spectral problems for discrete semi-bounded operators given on geometric graphs
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2020
\vol 13
\issue 4
\pages 19--32
\mathnet{http://mi.mathnet.ru/vyuru568}
\crossref{https://doi.org/10.14529/mmp200402}


Linking options:
  • http://mi.mathnet.ru/eng/vyuru568
  • http://mi.mathnet.ru/eng/vyuru/v13/i4/p19

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:26
    Full text:11
    References:2

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021