RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2003, Volume 299, Pages 112–151 (Mi znsl1119)  

This article is cited in 2 scientific papers (total in 2 papers)

On the cohomology of real algebraic varieties

I. O. Kalinin


Abstract: A class of spaces with involution introduced by the author is studied:effective spaces, whose cohomology rings of fixed-point sets are completely determined by the spectral sequence of involution. Real algebraic varieties admitting a “cellular decomposition” are effective $M$-spaces. Under certain restrictions, one calculates the spectral sequence of involution and the total $\mathbb Z_2$ Betti number of the real part for real subvarieties of real algebraic varieties that are effective $GM$-spaces.

Full text: PDF file (373 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2005, 131:1, 5323–5344

Bibliographic databases:

Received: 01.12.2002

Citation: I. O. Kalinin, “On the cohomology of real algebraic varieties”, Geometry and topology. Part 8, Zap. Nauchn. Sem. POMI, 299, POMI, St. Petersburg, 2003, 112–151; J. Math. Sci. (N. Y.), 131:1 (2005), 5323–5344

Citation in format AMSBIB
\Bibitem{Kal03}
\by I.~O.~Kalinin
\paper On the cohomology of real algebraic varieties
\inbook Geometry and topology. Part~8
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 299
\pages 112--151
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1119}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2038258}
\zmath{https://zbmath.org/?q=an:1140.14320}
\elib{http://elibrary.ru/item.asp?id=13490958}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 131
\issue 1
\pages 5323--5344
\crossref{https://doi.org/10.1007/s10958-005-0405-7}


Linking options:
  • http://mi.mathnet.ru/eng/znsl1119
  • http://mi.mathnet.ru/eng/znsl/v299/p112

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Krasnov, “On real quadric line complexes”, Izv. Math., 74:6 (2010), 1255–1276  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. V. A. Krasnov, “On intersections of two real quadrics”, Izv. Math., 82:1 (2018), 91–139  mathnet  crossref  crossref  adsnasa  isi  elib
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:141
    Full text:45
    References:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019