RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2000, Volume 263, Pages 157–186 (Mi znsl1140)  

This article is cited in 1 scientific paper (total in 1 paper)

On extremal decomposition problem in the family of general type systems of domains

G. V. Kuz'mina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: We prove a theorem extending results of the theory of extremal decomposition problems to families of systems of domains of general type. The considered families of systems of domains contain domains similar in the small to end and strip domains of a quadratic differential having poles of arbitrary orders $n_k\ge3$ at some marked points $c_k$, $k=1,…,p$. In this case, we give a simple definition of reduced modules for the considered systems of domains. Some other definitions for the treated systems of domains are also considered. Some examples are given illustrating the possibilities of applications of the theorem obtained in the problems on extremal decomposition.

Full text: PDF file (297 kB)

English version:
Journal of Mathematical Sciences (New York), 2002, 110:6, 3121–3139

Bibliographic databases:

UDC: 517.54
Received: 14.12.1999

Citation: G. V. Kuz'mina, “On extremal decomposition problem in the family of general type systems of domains”, Analytical theory of numbers and theory of functions. Part 16, Zap. Nauchn. Sem. POMI, 263, POMI, St. Petersburg, 2000, 157–186; J. Math. Sci. (New York), 110:6 (2002), 3121–3139

Citation in format AMSBIB
\Bibitem{Kuz00}
\by G.~V.~Kuz'mina
\paper On extremal decomposition problem in the family of general type systems of domains
\inbook Analytical theory of numbers and theory of functions. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2000
\vol 263
\pages 157--186
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1140}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1756344}
\zmath{https://zbmath.org/?q=an:1008.30015}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 110
\issue 6
\pages 3121--3139
\crossref{https://doi.org/10.1023/A:1015476429123}


Linking options:
  • http://mi.mathnet.ru/eng/znsl1140
  • http://mi.mathnet.ru/eng/znsl/v263/p157

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. N. Dubinin, N. V. Eirikh, “Obobschennyi privedennyi modul”, Dalnevost. matem. zhurn., 3:2 (2002), 150–164  mathnet  elib
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:94
    Full text:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019