RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 1999, Volume 265, Pages 42–63 (Mi znsl1189)  

This article is cited in 3 scientific papers (total in 3 papers)

Subgroups of the split orthogonal group. II

N. A. Vavilov

Saint-Petersburg State University

Abstract: In the first paper of the series, we proved standardness of subgroups containing a split maximal torus in the split orthogonal group $SO(n,R)$ over a commutative semilocal ring $R$ for the two following situations: 1) $n$ is even, 2) $n$ is odd and $R=K$ is a field. In the present paper we prove standardness of intermediate subgroups over a semilocal ring $R$ in the case of an odd $n$. Together with the preceeding papers by Z. I. Borewicz, the author, and E. V. Dybkova this paper completes description of the overgroups of split maximal tori in the classical groups over semilocal rings. The analysis of odd orthogonal groups turned out to be technically much more difficult than other classical cases. Unlike all preceeding papers the proof of the key step in the reduction to the field case relies on calculations with a class of semisimple elements which are neither microweight elements, nor semisimple root elements.

Full text: PDF file (272 kB)

English version:
Journal of Mathematical Sciences (New York), 2002, 112:3, 4266–4276

Bibliographic databases:

UDC: 519.46
Received: 10.11.1999

Citation: N. A. Vavilov, “Subgroups of the split orthogonal group. II”, Problems in the theory of representations of algebras and groups. Part 6, Zap. Nauchn. Sem. POMI, 265, POMI, St. Petersburg, 1999, 42–63; J. Math. Sci. (New York), 112:3 (2002), 4266–4276

Citation in format AMSBIB
\Bibitem{Vav99}
\by N.~A.~Vavilov
\paper Subgroups of the split orthogonal group.~II
\inbook Problems in the theory of representations of algebras and groups. Part~6
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 265
\pages 42--63
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1189}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1757815}
\zmath{https://zbmath.org/?q=an:1052.20030}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 112
\issue 3
\pages 4266--4276
\crossref{https://doi.org/10.1023/A:1020378516076}


Linking options:
  • http://mi.mathnet.ru/eng/znsl1189
  • http://mi.mathnet.ru/eng/znsl/v265/p42

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(n,R)$”, Algebra i analiz, 19:2 (2007), 10–51  mathnet  mathscinet  zmath  elib; N. A. Vavilov, V. A. Petrov, “Overgroups of $\mathrm{EO}(n,R)$”, St. Petersburg Math. J., 19:2 (2008), 167–195  crossref  isi
    2. N. A. Vavilov, “O podgruppakh simplekticheskoi gruppy, soderzhaschikh subsystem subgroup”, Voprosy teorii predstavlenii algebr i grupp. 16, Zap. nauchn. sem. POMI, 349, POMI, SPb., 2007, 5–29  mathnet  mathscinet  elib; N. A. Vavilov, “On subgroups of symplectic group containing a subsystem subgroup”, J. Math. Sci. (N. Y.), 151:3 (2008), 2937–2948  crossref  elib
    3. N. A. Vavilov, “Subgroups of $\operatorname{SL}_n$ over a semilocal ring”, J. Math. Sci. (N. Y.), 147:5 (2007), 6995–7004  mathnet  crossref  mathscinet  elib  elib
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:118
    Full text:35

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017