RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2002, Volume 286, Pages 126–147 (Mi znsl1572)  

This article is cited in 5 scientific papers (total in 5 papers)

Problems on extremal decomposition of the Riemann sphere. II

G. V. Kuz'mina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: In the present paper, we solve some problems on the maximum of the weighted sum
$$ \sum^n_{k=1}\alpha^2_kM(D_k, a_k) $$
($M(D_k, a_k)$ denote the reduced module of the domian $D_k$ with respect to the point $a_k\in D_k$) in the family of all nonoverlapping simple connected domians $D_k$, $a_k\in D_k$, $k=1,…,n$, where the points $a_1,…,a_n$, are free parameters satisfying certain geometric conditions. The proofs involve a version of the method of extremal metric, which reveals a certain symmetry of the extremal system of the points $a_1,…,a_n$. The problem on the maximum of the conformal invariant
\begin{equation} 2\pi\sum^5_{k=1}M(D_k,b_k)-\frac12\sum_{1\le b_k<b_l<5}\log|b_k-b_l| \tag{*} \end{equation}
for all systems of points $b_1,…,b_s$ is also considered. In the case where the systems $\{b_1,…,b_5\}$ are symmetric with respect to a certain circle, the problem was solved earlier. A theorem formulated in the author's previous work asserts that the maximum of invariant (*) for all system of points $\{b_1,…,b_5\}$ is attained in a certain well-defined case. In the present work, it is shown that the proof of this theorem contains mistake. A possible proof of the theorem is outlined.

Full text: PDF file (325 kB)

English version:
Journal of Mathematical Sciences (New York), 2004, 122:6, 3654–3666

Bibliographic databases:

UDC: 517.54
Received: 25.12.2001
Revised: 25.03.2002

Citation: G. V. Kuz'mina, “Problems on extremal decomposition of the Riemann sphere. II”, Analytical theory of numbers and theory of functions. Part 18, Zap. Nauchn. Sem. POMI, 286, POMI, St. Petersburg, 2002, 126–147; J. Math. Sci. (N. Y.), 122:6 (2004), 3654–3666

Citation in format AMSBIB
\Bibitem{Kuz02}
\by G.~V.~Kuz'mina
\paper Problems on extremal decomposition of the Riemann sphere.~II
\inbook Analytical theory of numbers and theory of functions. Part~18
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 286
\pages 126--147
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1572}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1937373}
\zmath{https://zbmath.org/?q=an:1086.30027}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 122
\issue 6
\pages 3654--3666
\crossref{https://doi.org/10.1023/B:JOTH.0000035241.35530.6f}


Linking options:
  • http://mi.mathnet.ru/eng/znsl1572
  • http://mi.mathnet.ru/eng/znsl/v286/p126

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. G. V. Kuz'mina, “The method of extremal metric in extremal decomposition problems with free parameters”, J. Math. Sci. (N. Y.), 129:3 (2005), 3843–3851  mathnet  crossref  mathscinet  zmath
    2. G. V. Kuz'mina, “Problems of extremal decomposition of the Riemann sphere. III”, J. Math. Sci. (N. Y.), 133:6 (2006), 1676–1685  mathnet  crossref  mathscinet  zmath  elib  elib
    3. V. N. Dubinin, “Capacities of condensers, generalizations of Grötzsch Lemmas, and symmetrization”, J. Math. Sci. (N. Y.), 143:3 (2007), 3053–3068  mathnet  crossref  mathscinet  zmath  elib  elib
    4. J. Math. Sci. (N. Y.), 222:5 (2017), 645–689  mathnet  crossref  mathscinet
    5. G. V. Kuz'mina, “On an extremal metric approach to extremal decomposition problems”, J. Math. Sci. (N. Y.), 225:6 (2017), 980–990  mathnet  crossref  mathscinet
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:137
    Full text:30

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019