General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Zap. Nauchn. Sem. POMI:

Personal entry:
Save password
Forgotten password?

Zap. Nauchn. Sem. LOMI, 1979, Volume 94, Pages 13–20 (Mi znsl1800)  

This article is cited in 4 scientific papers (total in 4 papers)

Subgroups of the full linear group over a Dedekind ring

Z. I. Borevich, N. A. Vavilov, V. Narkevich

Abstract: We study the subgroups of the full linear group $GL(n,R)$ over a Dedekind ring $R$ that contain the group of quasidiagonal matrices of fixed type with diagonal blocks of at least third order, each of which is generated by elementary matrices. For any such subgroup $H$ there exists a unique $D$-net $\sigma$of ideals of $R$ such that, where $E(\sigma)$ is the subgroup generated by all transvections of the net subgroup $G(\sigma)$. and is the normalizer of $G(\sigma)$. The subgroup $E(\sigma)$ is normal in. To study the factor group we introduce an intermediate subgroup $F(\sigma)$, $E(\sigma)\leqslant F(\sigma)\leqslant G(\sigma)$. The group is finite and is connected with permutations in the symmetric group. The factor group $G(\sigma)/F(\sigma)$ is Abelian – these are the values of a certain “determinant”. In the calculation of $F(\sigma)/E(\sigma)$ appears the $SK_1$-functor. Results are stated without proof.

Full text: PDF file (861 kB)

English version:
Journal of Soviet Mathematics, 1982, 19:1, 982–987

Bibliographic databases:

UDC: 519.46

Citation: Z. I. Borevich, N. A. Vavilov, V. Narkevich, “Subgroups of the full linear group over a Dedekind ring”, Rings and modules. Part 2, Zap. Nauchn. Sem. LOMI, 94, "Nauka", Leningrad. Otdel., Leningrad, 1979, 13–20; J. Soviet Math., 19:1 (1982), 982–987

Citation in format AMSBIB
\by Z.~I.~Borevich, N.~A.~Vavilov, V.~Narkevich
\paper Subgroups of the full linear group over a Dedekind ring
\inbook Rings and modules. Part~2
\serial Zap. Nauchn. Sem. LOMI
\yr 1979
\vol 94
\pages 13--20
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\jour J. Soviet Math.
\yr 1982
\vol 19
\issue 1
\pages 982--987

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. A. Vavilov, “O podgruppakh simplekticheskoi gruppy, soderzhaschikh subsystem subgroup”, Voprosy teorii predstavlenii algebr i grupp. 16, Zap. nauchn. sem. POMI, 349, POMI, SPb., 2007, 5–29  mathnet  mathscinet  elib; N. A. Vavilov, “On subgroups of symplectic group containing a subsystem subgroup”, J. Math. Sci. (N. Y.), 151:3 (2008), 2937–2948  crossref  elib
    2. A. V. Alexandrov, N. A. Vavilov, “Parabolic subgroups of $\mathrm{SL}_n$ and $\mathrm{Sp}_{2l}$ over a Dedekind ring of arithmetic type”, J. Math. Sci. (N. Y.), 171:3 (2010), 307–316  mathnet  crossref
    3. K. O. Batalkin, N. A. Vavilov, “Parabolicheskie podgruppy $\mathrm{SO}_{2l}$ nad dedekindovym koltsom arifmeticheskogo tipa”, Voprosy teorii predstavlenii algebr i grupp. 23, Zap. nauchn. sem. POMI, 400, POMI, SPb., 2012, 50–69  mathnet  mathscinet; K. O. Batalkin, N. A. Vavilov, “Parabolic subgroups of $\mathrm{SO}_{2l}$ over a Dedekind ring of arithmetic type”, J. Math. Sci. (N. Y.), 192:2 (2013), 154–163  crossref
    4. A. V. Schegolev, “Nadgruppy blochno-diagonalnykh podgrupp giperbolicheskoi unitarnoi gruppy nad kvazi-konechnym koltsom: osnovnye rezultaty”, Voprosy teorii predstavlenii algebr i grupp. 29, Zap. nauchn. sem. POMI, 443, POMI, SPb., 2016, 222–233  mathnet  mathscinet
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:134
    Full text:34

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017