|
Zap. Nauchn. Sem. POMI, 2006, Volume 336, Pages 199–210
(Mi znsl202)
|
|
|
|
This article is cited in 10 scientific papers (total in 10 papers)
Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces
G. A. Seregin St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
We prove some estimates for suitable weak solutions to the nonstationary three-dimensional Navier–Stokes equations under assumptions that certain invariant functionals of the velocity field are bounded.
Full text:
PDF file (171 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2007, 143:2, 2961–2968
Bibliographic databases:
UDC:
517 Received: 25.01.2006
Language:
Citation:
G. A. Seregin, “Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces”, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Zap. Nauchn. Sem. POMI, 336, POMI, St. Petersburg, 2006, 199–210; J. Math. Sci. (N. Y.), 143:2 (2007), 2961–2968
Citation in format AMSBIB
\Bibitem{Ser06}
\by G.~A.~Seregin
\paper Estimates of suitable weak solutions to the Navier--Stokes equations in critical Morrey spaces
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~37
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 336
\pages 199--210
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl202}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2270885}
\zmath{https://zbmath.org/?q=an:1127.35042}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 2
\pages 2961--2968
\crossref{https://doi.org/10.1007/s10958-007-0178-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247548774}
Linking options:
http://mi.mathnet.ru/eng/znsl202 http://mi.mathnet.ru/eng/znsl/v336/p199
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
G. A. Seregin, “Local regularity for suitable weak solutions of the Navier–Stokes equations”, Russian Math. Surveys, 62:3 (2007), 595–614
-
Seregin G., Zajaczkowski W., “A sufficient condition of regularity for axially symmetric solutions to the Navier–Stokes equations”, SIAM J Math Anal, 39:2 (2007), 669–685
-
J. Math. Sci. (N. Y.), 166:1 (2010), 1–10
-
Seregin G., Sverak V., “On Type I Singularities of the Local Axi-Symmetric Solutions of the Navier–Stokes Equations”, Comm Partial Differential Equations, 34:2 (2009), 171–201
-
J. Math. Sci. (N. Y.), 166:1 (2010), 40–52
-
J. Math. Sci. (N. Y.), 178:3 (2011), 282–291
-
Wang W.D., “Non Blow-Up Criterion For the 3-D Magneto-Hydrodynamics Equations in the Limiting Case”, Acta. Math. Sin.-English Ser., 33:7 (2017), 969–980
-
Liu J., Wang W., “Boundary Regularity Criteria For the 6D Steady Navier–Stokes and Mhd Equations”, J. Differ. Equ., 264:3 (2018), 2351–2376
-
Schonbek M., Seregin G., “Time Decay For Solutions to the Stokes Equations With Drift”, Commun. Contemp. Math., 20:3 (2018), 1750046
-
G. Seregin, “A note on weak solutions to the Navier–Stokes equations that are locally in $L_\infty(L^{3,\infty})$”, Algebra i analiz, 32:3 (2020), 238–253
|
Number of views: |
This page: | 189 | Full text: | 55 | References: | 24 |
|