RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. LOMI, 1976, Volume 59, Pages 60–80 (Mi znsl2085)  

Maximum of the fourth diameter in the family of continua with prescribed capacity

G. V. Kuz'mina


Abstract: We obtain a complete solution of the problem of the maximum of the fourth diameter
$$ d_4(E)=\{\max_{z_k,z_r\in E}\prod_{1\leqslant k\leqslant l\leqslant4}|z_k-z_l|\}^{1/6} $$
in the family of continua with capacity 1. Let $E(0,e^{i\alpha},e^{-i\alpha})$, $0<\alpha<\pi/2$, be a continuum of minimum capacity containing the points $0$, $e^{i\alpha}$, $e^{-i\alpha}$; $H(\alpha)=\operatorname{cap}E(0,e^{i\alpha},e^{-i\alpha})$. Let $c(\alpha)$ be the common point of three analytic arcs which form $E(0,e^{i\alpha},e^{-i\alpha})$. One shows that the indicated maximum is realized by the continuum $\mathscr E=ż:H(\alpha_0)z^2\in E(0,e^{i\alpha},e^{-i\alpha})\}$ where $\alpha_0$, $0<\alpha_0<\pi/2$, is a solution of the equation $c(\alpha)=\frac13\cos\alpha$. Any other extremal continuum of the gives problem is an image of $\mathscr E$ under the mapping $z\to e^{i\gamma}z+C$ ($\gamma$ is a real and $C$ is a complex constant). One finds the value of the required maximum. The paper contains a brief exposition of the proof of this result.

Full text: PDF file (803 kB)

English version:
Journal of Soviet Mathematics, 1978, 10:2, 241–256

Bibliographic databases:

UDC: 517.54

Citation: G. V. Kuz'mina, “Maximum of the fourth diameter in the family of continua with prescribed capacity”, Boundary-value problems of mathematical physics and related problems of function theory. Part 9, Zap. Nauchn. Sem. LOMI, 59, "Nauka", Leningrad. Otdel., Leningrad, 1976, 60–80; J. Soviet Math., 10:2 (1978), 241–256

Citation in format AMSBIB
\Bibitem{Kuz76}
\by G.~V.~Kuz'mina
\paper Maximum of the fourth diameter in the family of continua with prescribed capacity
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~9
\serial Zap. Nauchn. Sem. LOMI
\yr 1976
\vol 59
\pages 60--80
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2085}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=444939}
\zmath{https://zbmath.org/?q=an:0389.30019|0347.30015}
\transl
\jour J. Soviet Math.
\yr 1978
\vol 10
\issue 2
\pages 241--256
\crossref{https://doi.org/10.1007/BF01566605}


Linking options:
  • http://mi.mathnet.ru/eng/znsl2085
  • http://mi.mathnet.ru/eng/znsl/v59/p60

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:102
    Full text:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019