|
Zap. Nauchn. Sem. POMI, 2006, Volume 335, Pages 59–74
(Mi znsl209)
|
|
|
|
This article is cited in 10 scientific papers (total in 10 papers)
Integrable models for the vicious and friendly walkers
N. M. Bogolyubov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Random walks of the essentially different classes of random walkers, namely of the vicious and of the friendly ones, on the one-dimensional lattices with the periodic boundary conditions are considered. The walkers are called vicious since arriving on the same lattice site they annihilate not only one another but all the rest as well. On the contrary, the arbitrary number of the friendly walkers can share the same lattice sites. It is shown that the natural model describing the behavior of the friendly walkers is the integrable model of the boson type. The representation of the generating function for the number of the lattice paths made by the fixed number of the friendly walkers for the certain number of steps is obtained.
Full text:
PDF file (261 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2007, 143:1, 2729–2737
Bibliographic databases:
UDC:
517.9 Received: 02.06.2006
Citation:
N. M. Bogolyubov, “Integrable models for the vicious and friendly walkers”, Questions of quantum field theory and statistical physics. Part 19, Zap. Nauchn. Sem. POMI, 335, POMI, St. Petersburg, 2006, 59–74; J. Math. Sci. (N. Y.), 143:1 (2007), 2729–2737
Citation in format AMSBIB
\Bibitem{Bog06}
\by N.~M.~Bogolyubov
\paper Integrable models for the vicious and friendly walkers
\inbook Questions of quantum field theory and statistical physics. Part~19
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 335
\pages 59--74
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl209}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2269751}
\zmath{https://zbmath.org/?q=an:1127.82023}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 1
\pages 2729--2737
\crossref{https://doi.org/10.1007/s10958-007-0160-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247394520}
Linking options:
http://mi.mathnet.ru/eng/znsl209 http://mi.mathnet.ru/eng/znsl/v335/p59
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
N. M. Bogolyubov, “Four-vertex model”, J. Math. Sci. (N. Y.), 151:2 (2008), 2816–2828
-
J. Math. Sci. (N. Y.), 158:6 (2009), 771–786
-
N. M. Bogolyubov, K. L. Malyshev, “Correlation functions of the XX Heisenberg magnet and random walks of vicious walkers”, Theoret. and Math. Phys., 159:2 (2009), 563–574
-
Nikolay M. Bogolyubov, “Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model”, SIGMA, 5 (2009), 052, 11 pp.
-
N. M. Bogoliubov, K. Malyshev, “The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers”, St. Petersburg Math. J., 22:3 (2011), 359–377
-
J. Math. Sci. (N. Y.), 200:6 (2014), 662–670
-
N. M. Bogolyubov, K. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789–856
-
J. Math. Sci. (N. Y.), 216:1 (2016), 8–22
-
J. Math. Sci. (N. Y.), 238:6 (2019), 769–778
-
J. Math. Sci. (N. Y.), 242:5 (2019), 628–635
|
Number of views: |
This page: | 250 | Full text: | 77 | References: | 32 |
|