RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2006, Volume 335, Pages 59–74 (Mi znsl209)  

This article is cited in 10 scientific papers (total in 10 papers)

Integrable models for the vicious and friendly walkers

N. M. Bogolyubov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Random walks of the essentially different classes of random walkers, namely of the vicious and of the friendly ones, on the one-dimensional lattices with the periodic boundary conditions are considered. The walkers are called vicious since arriving on the same lattice site they annihilate not only one another but all the rest as well. On the contrary, the arbitrary number of the friendly walkers can share the same lattice sites. It is shown that the natural model describing the behavior of the friendly walkers is the integrable model of the boson type. The representation of the generating function for the number of the lattice paths made by the fixed number of the friendly walkers for the certain number of steps is obtained.

Full text: PDF file (261 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2007, 143:1, 2729–2737

Bibliographic databases:

UDC: 517.9
Received: 02.06.2006

Citation: N. M. Bogolyubov, “Integrable models for the vicious and friendly walkers”, Questions of quantum field theory and statistical physics. Part 19, Zap. Nauchn. Sem. POMI, 335, POMI, St. Petersburg, 2006, 59–74; J. Math. Sci. (N. Y.), 143:1 (2007), 2729–2737

Citation in format AMSBIB
\Bibitem{Bog06}
\by N.~M.~Bogolyubov
\paper Integrable models for the vicious and friendly walkers
\inbook Questions of quantum field theory and statistical physics. Part~19
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 335
\pages 59--74
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl209}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2269751}
\zmath{https://zbmath.org/?q=an:1127.82023}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 1
\pages 2729--2737
\crossref{https://doi.org/10.1007/s10958-007-0160-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247394520}


Linking options:
  • http://mi.mathnet.ru/eng/znsl209
  • http://mi.mathnet.ru/eng/znsl/v335/p59

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. M. Bogolyubov, “Four-vertex model”, J. Math. Sci. (N. Y.), 151:2 (2008), 2816–2828  mathnet  crossref  mathscinet
    2. J. Math. Sci. (N. Y.), 158:6 (2009), 771–786  mathnet  crossref  zmath
    3. N. M. Bogolyubov, K. L. Malyshev, “Correlation functions of the XX Heisenberg magnet and random walks of vicious walkers”, Theoret. and Math. Phys., 159:2 (2009), 563–574  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    4. Nikolay M. Bogolyubov, “Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model”, SIGMA, 5 (2009), 052, 11 pp.  mathnet  crossref  mathscinet  zmath
    5. N. M. Bogoliubov, K. Malyshev, “The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers”, St. Petersburg Math. J., 22:3 (2011), 359–377  mathnet  crossref  mathscinet  zmath  isi
    6. J. Math. Sci. (N. Y.), 200:6 (2014), 662–670  mathnet  crossref
    7. N. M. Bogolyubov, K. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789–856  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. J. Math. Sci. (N. Y.), 216:1 (2016), 8–22  mathnet  crossref  mathscinet
    9. J. Math. Sci. (N. Y.), 238:6 (2019), 769–778  mathnet  crossref
    10. J. Math. Sci. (N. Y.), 242:5 (2019), 628–635  mathnet  crossref
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:250
    Full text:77
    References:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021