|
|
Zap. Nauchn. Sem. LOMI, 1972, Volume 32, Pages 90–97
(Mi znsl2569)
|
|
|
|
Cut-elimination theorem for relevant logics
G. E. Mints
Abstract:
Cut-elimination theorem is proved for $R^+$ that is the positive fragment of $R$ (cf. [4]) supplied with $S4$-modality and intensional conjunction. This gives a decision procedure for the $\{\rightarrow,\&,0\}$ fragment of $R$. An extension of cut-elimination theorem to the positive part of Aekermann's calculus $E$ is only sketched. The formula $[(a\to u\vee v)\&(a\to(u\to v))]\to(a\to v)$ proposed as a counterexample to the conjencture that the replacement of $A\to B$ by $N(A\to B)$ is an embedding of $E$ into $R^+$. Formula (4) is a counterexample to Anderson's conjencture: if $\rceil((A\to B)\to(C\to D))$ is provable in $E$ then $A\to B$ is too.
Full text:
PDF file (545 kB)
Bibliographic databases:
Citation:
G. E. Mints, “Cut-elimination theorem for relevant logics”, Studies in constructive mathematics and mathematical logic. Part V, Zap. Nauchn. Sem. LOMI, 32, "Nauka", Leningrad. Otdel., Leningrad, 1972, 90–97
Citation in format AMSBIB
\Bibitem{Min72}
\by G.~E.~Mints
\paper Cut-elimination theorem for relevant logics
\inbook Studies in constructive mathematics and mathematical logic. Part~V
\serial Zap. Nauchn. Sem. LOMI
\yr 1972
\vol 32
\pages 90--97
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl2569}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=344083}
Linking options:
http://mi.mathnet.ru/eng/znsl2569 http://mi.mathnet.ru/eng/znsl/v32/p90
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
| Number of views: |
| This page: | 182 | | Full text: | 89 |
|