|
Zap. Nauchn. Sem. POMI, 2006, Volume 330, Pages 201–222
(Mi znsl286)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Geometrical equivalence, geometrical similarity, and geometrical compatibility of algebras
B. I. Plotkin Hebrew University of Jerusalem
Abstract:
In the paper the main attention is paid to conditions on algebras from a given variety which provide coincidence of their algebraic geometries. The main part here play the notions mentioned in the title of the paper.
Full text:
PDF file (235 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2007, 140:5, 716–728
Bibliographic databases:
UDC:
512.5 Received: 10.12.2005
Language:
Citation:
B. I. Plotkin, “Geometrical equivalence, geometrical similarity, and geometrical compatibility of algebras”, Problems in the theory of representations of algebras and groups. Part 13, Zap. Nauchn. Sem. POMI, 330, POMI, St. Petersburg, 2006, 201–222; J. Math. Sci. (N. Y.), 140:5 (2007), 716–728
Citation in format AMSBIB
\Bibitem{Plo06}
\by B.~I.~Plotkin
\paper Geometrical equivalence, geometrical similarity, and geometrical compatibility of algebras
\inbook Problems in the theory of representations of algebras and groups. Part~13
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 330
\pages 201--222
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl286}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2253574}
\zmath{https://zbmath.org/?q=an:1139.08004}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 140
\issue 5
\pages 716--728
\crossref{https://doi.org/10.1007/s10958-007-0011-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846166069}
Linking options:
http://mi.mathnet.ru/eng/znsl286 http://mi.mathnet.ru/eng/znsl/v330/p201
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Plotkin B., “Some Results and Problems Related to Universal Algebraic Geometry”, Int. J. Algebr. Comput., 17:5-6 (2007), 1133–1164
-
A. G. Pinus, “The algebraic and logical geometries of universal algebras (a unified approach)”, J. Math. Sci., 185:3 (2012), 473–483
-
E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. VI. Geometric equivalence”, Algebra and Logic, 56:4 (2017), 281–294
-
E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Universal geometrical equivalence of the algebraic structures of common signature”, Siberian Math. J., 58:5 (2017), 801–812
-
E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. VIII. Geometricheskie ekvivalentnosti i osobye klassy algebraicheskikh sistem”, Fundament. i prikl. matem., 22:4 (2019), 75–100
|
Number of views: |
This page: | 131 | Full text: | 62 | References: | 18 |
|