RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2005, Volume 327, Pages 5–16 (Mi znsl320)  

This article is cited in 1 scientific paper (total in 1 paper)

A version of the Grothendieck theorem for subspaces of analytic functions in lattices

D. S. Anisimov

Saint-Petersburg State University

Abstract: A version of Grothendieck's inequality says that any bounded linear operator acting from a Banach lattice $X$ to a Banach lattice $Y$, also acts from $X(\ell^2)$ to $Y(\ell^2)$. A similar statement is proved for Hardy-type subspaces in lattices of measurable functions. Namely, let $X$ be a Banach lattice of measurable functions on the circle, and let an operator $T$ act from the corresponding subspace of analytic functions $X_A$ to a Banach lattice $Y$ or, if $Y$ is also a lattice of measurable functions on the circle, to the quotient space $Y/Y_A$. Under certain mild conditions on the lattices involved, it is proved that $T$ induces an operator acting from $X_A(\ell^2)$ to $Y(\ell^2)$ or to $Y/Y_A(\ell^2)$, respectively.

Full text: PDF file (214 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2006, 139:2, 6363–6368

Bibliographic databases:

UDC: 517.5
Received: 20.05.2005

Citation: D. S. Anisimov, “A version of the Grothendieck theorem for subspaces of analytic functions in lattices”, Investigations on linear operators and function theory. Part 33, Zap. Nauchn. Sem. POMI, 327, POMI, St. Petersburg, 2005, 5–16; J. Math. Sci. (N. Y.), 139:2 (2006), 6363–6368

Citation in format AMSBIB
\Bibitem{Ani05}
\by D.~S.~Anisimov
\paper A version of the Grothendieck theorem for subspaces of analytic functions in lattices
\inbook Investigations on linear operators and function theory. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 327
\pages 5--16
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl320}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2184425}
\zmath{https://zbmath.org/?q=an:1091.46018}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 139
\issue 2
\pages 6363--6368
\crossref{https://doi.org/10.1007/s10958-006-0353-x}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750145429}


Linking options:
  • http://mi.mathnet.ru/eng/znsl320
  • http://mi.mathnet.ru/eng/znsl/v327/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. S. Anisimov, S. V. Kislyakov, “Strong factorization of operators defined on subspaces of analytic functions in lattices”, J. Math. Sci. (N. Y.), 141:5 (2007), 1511–1516  mathnet  crossref  mathscinet  zmath
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:232
    Full text:66
    References:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020