|
Zap. Nauchn. Sem. POMI, 2005, Volume 327, Pages 115–134
(Mi znsl327)
|
|
|
|
The Krein string and characteristic functions of non-self-adjoint operators
A. S. Kostenko Donetsk National University
Abstract:
The operator generated by the Krein string is investigated in the framework of the extension theory of symmetric operators. A simple proof of the complete non-self-adjointness of the operator is proposed. The scattering function of the string is obtained with the help of the Derkach–Malamud formula for characteristic functions of almost solvable extensions.
Full text:
PDF file (249 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2006, 139:2, 6425–6436
Bibliographic databases:
UDC:
517.948 Received: 07.09.2005
Citation:
A. S. Kostenko, “The Krein string and characteristic functions of non-self-adjoint operators”, Investigations on linear operators and function theory. Part 33, Zap. Nauchn. Sem. POMI, 327, POMI, St. Petersburg, 2005, 115–134; J. Math. Sci. (N. Y.), 139:2 (2006), 6425–6436
Citation in format AMSBIB
\Bibitem{Kos05}
\by A.~S.~Kostenko
\paper The Krein string and characteristic functions of non-self-adjoint operators
\inbook Investigations on linear operators and function theory. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 327
\pages 115--134
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl327}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2184432}
\zmath{https://zbmath.org/?q=an:1107.47017}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 139
\issue 2
\pages 6425--6436
\crossref{https://doi.org/10.1007/s10958-006-0360-y}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750196091}
Linking options:
http://mi.mathnet.ru/eng/znsl327 http://mi.mathnet.ru/eng/znsl/v327/p115
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 184 | Full text: | 84 | References: | 24 |
|