RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Зап. научн. сем. ПОМИ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Зап. научн. сем. ПОМИ, 2009, том 365, страницы 5–28 (Mi znsl3463)  

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

Об описании надгрупп $E(m,R)\otimes E(n,R)$

А. С. Ананьевский, Н. А. Вавилов, С. С. Синчук

С.-Петербургский государственный университет

Аннотация: В настоящей работе изучаются подгруппы $E(m,R)\otimes E(n,R)\le H\le G=\operatorname{GL}(mn,R)$, в предположении, что кольцо $R$ коммутативно, а $m,n\ge3$. Мы задаем группу $\operatorname{GL}_m\otimes\operatorname{GL}_n$ уравнениями, вычисляем нормализатор группы $E(m,R)\otimes E(n,R)$ и связываем с каждой промежуточной подгруппой $H$ однозначно определенный уровень $(A,B,C)$, где $A,B,C$ – идеалы в $R$, причем $mA,A^2\le B\le A$ и $nA,A^2\le C\le A$. Уровень определяет наибольшую элементарную подгруппу такую, что $E(m,n,R,A,B,C)\le H$. Стандартный ответ на рассматриваемую задачу состоит в том, что $H$ содержится в нормализаторе $N_G(E(m,n,R,A,B,C))$. Библ. – 46 назв.

Полный текст: PDF файл (316 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Journal of Mathematical Sciences (New York), 2009, 161:4, 461–473

Реферативные базы данных:

УДК: 512.5+512.6+512.7+512.8
Поступило: 10.06.2000

Образец цитирования: А. С. Ананьевский, Н. А. Вавилов, С. С. Синчук, “Об описании надгрупп $E(m,R)\otimes E(n,R)$”, Вопросы теории представлений алгебр и групп. 18, Зап. научн. сем. ПОМИ, 365, ПОМИ, СПб., 2009, 5–28; J. Math. Sci. (N. Y.), 161:4 (2009), 461–473

Цитирование в формате AMSBIB
\RBibitem{AnaVavSin09}
\by А.~С.~Ананьевский, Н.~А.~Вавилов, С.~С.~Синчук
\paper Об описании надгрупп $E(m,R)\otimes E(n,R)$
\inbook Вопросы теории представлений алгебр и групп.~18
\serial Зап. научн. сем. ПОМИ
\yr 2009
\vol 365
\pages 5--28
\publ ПОМИ
\publaddr СПб.
\mathnet{http://mi.mathnet.ru/znsl3463}
\elib{http://elibrary.ru/item.asp?id=15303447}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 161
\issue 4
\pages 461--473
\crossref{https://doi.org/10.1007/s10958-009-9576-y}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349587827}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/znsl3463
  • http://mi.mathnet.ru/rus/znsl/v365/p5

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Н. А. Вавилов, В. Г. Казакевич, “Еще несколько вариаций на тему разложения трансвекций”, Вопросы теории представлений алгебр и групп. 19, Зап. научн. сем. ПОМИ, 375, ПОМИ, СПб., 2010, 32–47  mathnet; N. A. Vavilov, V. G. Kazakevich, “More variations on decomposition of transvections”, J. Math. Sci. (N. Y.), 171:3 (2010), 322–330  crossref
    2. А. С. Ананьевский, Н. А. Вавилов, С. С. Синчук, “О надгруппах $E(m,R)\otimes E(n,R)$. I. Уровни и нормализаторы”, Алгебра и анализ, 23:5 (2011), 55–98  mathnet  mathscinet  elib; A. S. Ananyevskiy, N. A. Vavilov, S. S. Sinchuk, “Overgroups of $E(m,R)\otimes E(n,R)$. I”, St. Petersburg Math. J., 23:5 (2012), 819–849  crossref  isi  elib
    3. Бакулин С.В., Вавилов Н.А., “О подгруппах, нормализуемых $EO(2L,R)$*”, Вестник Санкт-Петербургского университета. Серия 1: Математика. Механика. Астрономия, 2011, № 4, 19–27  mathscinet  zmath  elib
    4. Н. А. Вавилов, А. В. Щеголев, “Надгруппы subsystem subgroups в исключительных группах: уровни”, Вопросы теории представлений алгебр и групп. 23, Зап. научн. сем. ПОМИ, 400, ПОМИ, СПб., 2012, 70–126  mathnet  mathscinet; N. A. Vavilov, A. V. Shchegolev, “Overgroups of subsystem subgroups in exceptional groups: levels”, J. Math. Sci. (N. Y.), 192:2 (2013), 164–195  crossref
  • Записки научных семинаров ПОМИ
    Просмотров:
    Эта страница:223
    Полный текст:96
    Литература:21

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017