Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2009, Volume 370, Pages 132–150 (Mi znsl3535)  

This article is cited in 2 scientific papers (total in 2 papers)

Estimates of deviations from exact solutions of variational problems with linear growth functionals

S. I. Repin

St. Petersburg Department of Steklov Mathematical Institute RAS, St. Petersburg, Russia

Abstract: In this paper, we derive estimates of deviations from exact solutions of variational problems with linear growth functionals. Since original variational problem may have no minimizer in a reflexive Banach space, the estimates are presented in terms of the dual problem. We prove the consistency of these estimates and obtain their computationally convenient forms. Bibl. – 36 titles.

Key words and phrases: a posteriori error estimates, duality theory, variational problems, linear growth functionals.

Full text: PDF file (615 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2010, 166:1, 75–85

UDC: 517.9
Received: 28.09.2009
Language:

Citation: S. I. Repin, “Estimates of deviations from exact solutions of variational problems with linear growth functionals”, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Zap. Nauchn. Sem. POMI, 370, POMI, St. Petersburg, 2009, 132–150; J. Math. Sci. (N. Y.), 166:1 (2010), 75–85

Citation in format AMSBIB
\Bibitem{Rep09}
\by S.~I.~Repin
\paper Estimates of deviations from exact solutions of variational problems with linear growth functionals
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~40
\serial Zap. Nauchn. Sem. POMI
\yr 2009
\vol 370
\pages 132--150
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3535}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 166
\issue 1
\pages 75--85
\crossref{https://doi.org/10.1007/s10958-010-9846-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949296650}


Linking options:
  • http://mi.mathnet.ru/eng/znsl3535
  • http://mi.mathnet.ru/eng/znsl/v370/p132

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Fuchs M., Repin S., “A posteriori error estimates for the approximations of the stresses in the Hencky plasticity problem”, Numer. Funct. Anal. Optim., 32:6 (2011), 610–640  crossref  mathscinet  zmath  isi  elib  scopus
    2. Haslinger J., Repin S., Sysala S., “A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting”, J. Comput. Appl. Math., 303 (2016), 156–170  crossref  mathscinet  zmath  isi  elib  scopus
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:141
    Full text:35
    References:25

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022