RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2005, Volume 325, Pages 225–242 (Mi znsl359)  

This article is cited in 2 scientific papers (total in 2 papers)

$\sigma$-Extensions of discrete multivalued groups

P. V. Yagodovskii

Finance Academy under the Government of the Russian Federation

Abstract: The aim of this paper is to discover new classes of discrete multivalued groups and to find criteria for recognition of coset groups. It is shown in [11] that the set of discrete coset groups with one generator is the union of categories. These categories are indexed by the set of special symmetric graphs. Bearing in mind our aim, we define $\sigma$-extensions of discrete multivalued groups. Our main result is as follows: the construction of $\sigma$-extensions of discrete multivalued groups is equivariant with respect to functors of these categories.

Full text: PDF file (244 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2006, 138:3, 5753–5761

Bibliographic databases:

UDC: 517.98
Received: 23.09.2004

Citation: P. V. Yagodovskii, “$\sigma$-Extensions of discrete multivalued groups”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Zap. Nauchn. Sem. POMI, 325, POMI, St. Petersburg, 2005, 225–242; J. Math. Sci. (N. Y.), 138:3 (2006), 5753–5761

Citation in format AMSBIB
\Bibitem{Yag05}
\by P.~V.~Yagodovskii
\paper $\sigma$-Extensions of discrete multivalued groups
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XII
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 325
\pages 225--242
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl359}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2160328}
\zmath{https://zbmath.org/?q=an:1083.20062}
\elib{http://elibrary.ru/item.asp?id=9127002}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 138
\issue 3
\pages 5753--5761
\crossref{https://doi.org/10.1007/s10958-006-0343-z}
\elib{http://elibrary.ru/item.asp?id=13515724}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748666619}


Linking options:
  • http://mi.mathnet.ru/eng/znsl359
  • http://mi.mathnet.ru/eng/znsl/v325/p225

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Gaifullin, P. V. Yagodovskii, “Integrability of $m$-valued dynamics by means of single-generated $m$-valued groups”, Russian Math. Surveys, 62:1 (2007), 181–183  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. P. V. Yagodovsky, “Duality in the theory of finite commutative multivalued groups”, J. Math. Sci. (N. Y.), 174:1 (2011), 97–119  mathnet  crossref
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:132
    Full text:36
    References:32

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019