RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2010, Volume 376, Pages 64–87 (Mi znsl3619)  

This article is cited in 1 scientific paper (total in 1 paper)

Chebyshev $C_0$-operator polynomials and their representation

V. A. Kostin, M. N. Nebolsina

Voronezh State University, Voronezh, Russia

Abstract: Certain estimates for the resolvent of a block-discrete Schrödinger operator with a constant diagonal perturbation are obtained. For that, the resolvent is represented in terms of the Chebychev polynomials of the (in general, unbounded) operator that represents a block of the perturbation. Bibl. – 12 titles.

Key words and phrases: operator Chebyshev polynomials, $C_0$-semigroup, generator.

Full text: PDF file (639 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2011, 172:2, 215–228

UDC: 517.518.13+517.983.5
Received: 17.05.2010

Citation: V. A. Kostin, M. N. Nebolsina, “Chebyshev $C_0$-operator polynomials and their representation”, Investigations on linear operators and function theory. Part 38, Zap. Nauchn. Sem. POMI, 376, POMI, St. Petersburg, 2010, 64–87; J. Math. Sci. (N. Y.), 172:2 (2011), 215–228

Citation in format AMSBIB
\Bibitem{KosNeb10}
\by V.~A.~Kostin, M.~N.~Nebolsina
\paper Chebyshev $C_0$-operator polynomials and their representation
\inbook Investigations on linear operators and function theory. Part~38
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 376
\pages 64--87
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3619}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 172
\issue 2
\pages 215--228
\crossref{https://doi.org/10.1007/s10958-010-0194-5}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78651288226}


Linking options:
  • http://mi.mathnet.ru/eng/znsl3619
  • http://mi.mathnet.ru/eng/znsl/v376/p64

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Addendum

    This publication is cited in the following articles:
    1. V. A. Kostin, M. N. Nebolsina, “K teorii $C_0$-operatornykh ortogonalnykh mnogochlenov”, Issledovaniya po lineinym operatoram i teorii funktsii. 45, Zap. nauchn. sem. POMI, 456, POMI, SPb., 2017, 125–134  mathnet
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:219
    Full text:62
    References:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020