RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2010, Volume 378, Pages 184–227 (Mi znsl3834)  

Duality in the theory of finite commutative multivalued groups

P. V. Yagodovsky

Finance Academy under the Government of the Russian Federation, Moscow, Russia

Abstract: The purpose of this paper is to construct a duality theory for finite commutative multivalued groups and to demonstrate its connection with the classical duality in the theory of ordinary groups and the Kawada–Delsarte duality in algebraic combinatorics. We study in detail the case of multivalued groups of order three, construct a parameterization of the set of these groups, and obtain explicit formulas for the duality. In future, we plan to use this duality in the study of the coset problem. Bibl. 26 titles.

Key words and phrases: $n$-valued groups, coset and double coset groups, involutive multivalued groups, singly generated multivalued groups, association schemes, $C$-algebras, duality for multivalued groups, duality for $C$-algebras.

Full text: PDF file (781 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2011, 174:1, 97–119

UDC: 515.179
Received: 20.07.2010

Citation: P. V. Yagodovsky, “Duality in the theory of finite commutative multivalued groups”, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Zap. Nauchn. Sem. POMI, 378, POMI, St. Petersburg, 2010, 184–227; J. Math. Sci. (N. Y.), 174:1 (2011), 97–119

Citation in format AMSBIB
\Bibitem{Yag10}
\by P.~V.~Yagodovsky
\paper Duality in the theory of finite commutative multivalued groups
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XVIII
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 378
\pages 184--227
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3834}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 174
\issue 1
\pages 97--119
\crossref{https://doi.org/10.1007/s10958-011-0284-z}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952814287}


Linking options:
  • http://mi.mathnet.ru/eng/znsl3834
  • http://mi.mathnet.ru/eng/znsl/v378/p184

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:146
    Full text:54
    References:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019