RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Зап. научн. сем. ПОМИ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Зап. научн. сем. ПОМИ, 2010, том 383, страницы 5–32 (Mi znsl3869)  

Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)

Оценки функционалов с известной последовательностью моментов через отклонения средних типа Стеклова

О. Л. Виноградов, В. В. Жук

С.-Петербургский государственный университет, Санкт-Петербург, Россия

Аннотация: Пусть $C$ – пространство $2\pi$-периодических непрерывных функций, $\delta_t^r$ – центральные разности, $S_{h,r}$ – средние Стеклова,
$$ S_{h,r,m}=\sum_{j=1}^m(-1)^{j-1}\frac{2C_{2m}^{m-j}}{C^m_{2m}}S_{jh,r},\qquad V_{h,r,m}=\sum_{j=1}^m(-1)^{j-1}\frac{2C_{2m}^{m-j}}{C^m_{2m}}\delta^r_{jh}, $$
$\nu_{r,m}=\sup_{h>0}\|V_{h,r,m}\|$; $\Phi\colon C\to\mathbb R_+$ – полуаддитивный функционал, $m_k(\Phi)=\sup_{f\in C^{(k)}}\frac{\Phi(f)}{\|f^{(k)}\|}$. Доказываются утверждения следующего типа. Пусть $r,m\in\mathbb N$, $h>0$, $p\in\mathbb Z_+$, $f\in C$, ряд $\sum_{k=0}^\infty C_{k+p}^p\frac{m_{rk}(\Phi)}{h^{rk}}\nu_{r,m}^k$ сходится. Тогда
$$ \Phi(f)\le(\sum_{k=0}^\infty C_{k+p}^p\frac{m_{rk}(\Phi)}{h^{rk}}\nu_{r,m}^k)\|(I-S_{h,r,m})^{p+1}(f)\|. $$
Как следствия, получаются неравенства типа Джексона с лучшими, чем было известно ранее, постоянными.
Библ. – 9 назв.

Ключевые слова: функция Стеклова, модуль непрерывности, наилучшее приближение, моменты функционалов.

Полный текст: PDF файл (303 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Journal of Mathematical Sciences (New York), 2011, 178:2, 115–131

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.5
Поступило: 06.09.2010

Образец цитирования: О. Л. Виноградов, В. В. Жук, “Оценки функционалов с известной последовательностью моментов через отклонения средних типа Стеклова”, Аналитическая теория чисел и теория функций. 25, Зап. научн. сем. ПОМИ, 383, ПОМИ, СПб., 2010, 5–32; J. Math. Sci. (N. Y.), 178:2 (2011), 115–131

Цитирование в формате AMSBIB
\RBibitem{VinZhu10}
\by О.~Л.~Виноградов, В.~В.~Жук
\paper Оценки функционалов с~известной последовательностью моментов через отклонения средних типа Стеклова
\inbook Аналитическая теория чисел и теория функций.~25
\serial Зап. научн. сем. ПОМИ
\yr 2010
\vol 383
\pages 5--32
\publ ПОМИ
\publaddr СПб.
\mathnet{http://mi.mathnet.ru/znsl3869}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 178
\issue 2
\pages 115--131
\crossref{https://doi.org/10.1007/s10958-011-0531-3}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053463964}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/znsl3869
  • http://mi.mathnet.ru/rus/znsl/v383/p5

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. О. Л. Виноградов, В. В. Жук, “Скорость убывания констант в неравенствах типа Джексона в зависимости от порядка модуля непрерывности”, Аналитическая теория чисел и теория функций. 25, Зап. научн. сем. ПОМИ, 383, ПОМИ, СПб., 2010, 33–52  mathnet
    2. О. Л. Виноградов, В. В. Жук, “Оценки функционалов с известным конечным набором моментов через отклонения операторов, построенных на основе средних Стеклова и конечных разностей”, Аналитическая теория чисел и теория функций. 26, Зап. научн. сем. ПОМИ, 392, ПОМИ, СПб., 2011, 32–66  mathnet; O. L. Vinogradov, V. V. Zhuk, “Estimates for functionals with a known finite set of moments in terms of deviations of operators constructed with the use of the Steklov averages and finite differences”, J. Math. Sci. (N. Y.), 184:6 (2012), 679–698  crossref
    3. О. Л. Виноградов, “Точные оценки наилучших приближений через голоморфные функции от операторов типа Вейерштрасса”, Аналитическая теория чисел и теория функций. 27, Зап. научн. сем. ПОМИ, 404, ПОМИ, СПб., 2012, 18–60  mathnet  mathscinet; O. L. Vinogradov, “Sharp estimates of best approximations in terms of holomorphic functions of Weierstrass-type operators”, J. Math. Sci. (N. Y.), 193:1 (2013), 8–31  crossref
    4. В. В. Жук, “Неравенства для наилучших приближений типа обобщенной теоремы Джексона”, Аналитическая теория чисел и теория функций. 27, Зап. научн. сем. ПОМИ, 404, ПОМИ, СПб., 2012, 135–156  mathnet  mathscinet; V. V. Zhuk, “Inequalities of type generalized Jackson theorem for best approximations”, J. Math. Sci. (N. Y.), 193:1 (2013), 75–88  crossref
    5. О. Л. Виноградов, В. В. Жук, “Оценки функционалов с известным конечным набором моментов через модули непрерывности и поведение констант в неравенствах типа Джексона”, Алгебра и анализ, 24:5 (2012), 1–43  mathnet  mathscinet  zmath  elib; O. L. Vinogradov, V. V. Zhuk, “Estimates for functional with a known finite set of moments in terms of moduli of continuity and behaviour of constants in the Jackson-type inequalities”, St. Petersburg Math. J., 24:5 (2013), 691–721  crossref  isi
    6. О. Л. Виноградов, В. В. Жук, “Оценки функционалов с известным конечным набором моментов через модули непрерывности высоких порядков в пространствах функций, заданных на отрезке”, Алгебра и анализ, 25:3 (2013), 86–120  mathnet  mathscinet  zmath  elib; O. L. Vinogradov, V. V. Zhuk, “Estimates for functionals with a known finite set of moments in terms of high order moduli of continuity in the spaces of functions defined on the segment”, St. Petersburg Math. J., 25:3 (2014), 421–446  crossref  isi
    7. Gladkaya A.V. Vinogradov O.L., “Sharp Jackson type inequalities for spline approximation on the axis”, Anal. Math., 43:1 (2017), 27–47  crossref  mathscinet  zmath  isi  scopus
  • Записки научных семинаров ПОМИ
    Просмотров:
    Эта страница:180
    Полный текст:41
    Литература:19

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018