RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2010, Volume 384, Pages 105–153 (Mi znsl3887)  

This article is cited in 3 scientific papers (total in 3 papers)

Uniform rates of approximation by short asymptotic expansions in the CLT for quadratic forms

F. Götzea, A. Yu. Zaitsevb

a Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany
b St. Petersburg Branch Steklov Mathematical Institute, St. Petersburg, Russia

Abstract: Let $X,X_1,X_2,…$ be i.i.d. $\mathbb R^d$-valued real random vectors. Assume that $\mathbf EX=0$ and that $X$ has a non-degenerate distribution. Let $G$ be a mean zero Gaussian random vector with the same covariance operator as that of $X$. We investigate the distributions of non-degenerate quadratic forms $\mathbb Q[S_N]$ of the normalized sums $S_N=N^{-1/2}(X_1+…+X_N)$ and show that, without any additional conditions, for any $a\in\mathbb R^d$,
$$ \Delta_N^{(a)}\stackrel{\mathrm{def}}=\sup_x|\mathbf P\{\mathbb Q[S_N-a]\le x\}-\mathbf P\{\mathbb Q[G-a]\le x\}-E_a(x)|=\mathcal O(N^{-1}), $$
provided that $d\ge5$ and $\mathbf E\|X\|^4<\infty$. Here $E_a(x)$ is the Edgeworth type correction of order $\mathcal O(N^{-1/2})$. Furthermore, we provide explicit bounds of order $\mathcal O(N^{-1})$ for $\Delta_N^{(a)}$ and for the concentration function of the random variable $\mathbb Q[S_N+a]$, $a\in\mathbb R^d$. Our results extend the corresponding results of Bentkus and Götze (1997) ($d\ge9$) to the case $d\ge5$. Bibl. 35 titles.

Key words and phrases: Central Limit Theorem, quadratic forms, concentration inequalities, convergence rates.

Full text: PDF file (460 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2011, 176:2, 162–189

UDC: 519
Received: 12.11.2010

Citation: F. Götze, A. Yu. Zaitsev, “Uniform rates of approximation by short asymptotic expansions in the CLT for quadratic forms”, Probability and statistics. Part 16, Zap. Nauchn. Sem. POMI, 384, POMI, St. Petersburg, 2010, 105–153; J. Math. Sci. (N. Y.), 176:2 (2011), 162–189

Citation in format AMSBIB
\Bibitem{GotZai10}
\by F.~G\"otze, A.~Yu.~Zaitsev
\paper Uniform rates of approximation by short asymptotic expansions in the CLT for quadratic forms
\inbook Probability and statistics. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2010
\vol 384
\pages 105--153
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3887}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 176
\issue 2
\pages 162--189
\crossref{https://doi.org/10.1007/s10958-011-0408-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959559903}


Linking options:
  • http://mi.mathnet.ru/eng/znsl3887
  • http://mi.mathnet.ru/eng/znsl/v384/p105

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Goetze F., Zaitsev A.Yu., “Explicit Rates of Approximation in the Clt for Quadratic Forms”, Ann. Probab., 42:1 (2014), 354–397  crossref  mathscinet  zmath  isi  scopus
    2. I. S. Borisov, N. V. Volod'ko, “Asymptotic expansions for the distributions of canonical $V$-statistics of third order”, Theory Probab. Appl., 60:1 (2016), 1–18  mathnet  crossref  crossref  mathscinet  isi  elib
    3. Lifshits M.A. Nikitin Ya.Yu. Petrov V.V. Zaitsev A.Yu. Zinger A.A., “Toward the History of the Saint Petersburg School of Probability and Statistics. i. Limit Theorems For Sums of Independent Random Variables”, Vestn. St Petersb. Univ.-Math., 51:2 (2018), 144–163  crossref  mathscinet  zmath  isi  scopus
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:161
    Full text:51
    References:36

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021