RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. LOMI, 1982, Volume 122, Pages 117–127 (Mi znsl4090)  

Topological properties of certain incomplete regular intersections

N. Yu. Netsvetaev


Abstract: The author announces some, mostly topological, results on certain nonsingular complex projective varieties. These varieties may be represented as regular intersections of hypersurfaces which number equals the codimension of the variety plus $1$. Formulas are given for its Euler characteristic and, in the case of codimension $2$, for the Todd genus and the signature. These formulas contain the degree of the variety and degrees of its equations. So called determinantali loci yield a stock of such varieties. As to dimensions $2$ and $3$ the iff-comdition for such varieties to be a determinantal locus is described by a simple inequality involving the degree of the variety and degrees of its equations. On the other hand, all such varieties of dimension not less than its codimension and greater than $3$ turn out to be regular complete intersections.

Full text: PDF file (577 kB)

Bibliographic databases:
UDC: 515.165.4

Citation: N. Yu. Netsvetaev, “Topological properties of certain incomplete regular intersections”, Investigations in topology. Part IV, Zap. Nauchn. Sem. LOMI, 122, "Nauka", Leningrad. Otdel., Leningrad, 1982, 117–127

Citation in format AMSBIB
\Bibitem{Net82}
\by N.~Yu.~Netsvetaev
\paper Topological properties of certain incomplete regular intersections
\inbook Investigations in topology. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 122
\pages 117--127
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4090}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=661470}


Linking options:
  • http://mi.mathnet.ru/eng/znsl4090
  • http://mi.mathnet.ru/eng/znsl/v122/p117

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:106
    Full text:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020