RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. LOMI, 1982, Volume 122, Pages 135–136 (Mi znsl4092)  

This article is cited in 1 scientific paper (total in 1 paper)

Nielsen numbers and fixed points of self-mappings of wedges of circles

V. G. Turaev


Abstract: It is well known that if $f$ is a self-mapping of a compact connected polyhedron then $f$ has at least $N(f)$ fixed points where $N(f)$ denotes the Hielsen number of $f$. The present paper shows that for some self-mappings of $S^1\vee S^1$ tnis estimate is far from being precise. Namely, the following theorem is proved:
If $\alpha$ and $\beta$ are the canonical generators of $\pi_1(S^1\vee S^1)$ and if $f$ is a mapping $S^1\vee S^1\to S^1\vee S^1$ such that $f_\sharp(\alpha)=1$ and $f_\sharp(\beta)$ is conjugate to $(\alpha\beta\alpha^{-1}\beta^{-1})^n\alpha\beta\alpha^{-1}$ with $n\geqslant1$ then $N(f)=0$ and any mapping homotopic to $f$ has at least $2n-1$ fixed points.

Full text: PDF file (153 kB)

Bibliographic databases:
UDC: 515.143

Citation: V. G. Turaev, “Nielsen numbers and fixed points of self-mappings of wedges of circles”, Investigations in topology. Part IV, Zap. Nauchn. Sem. LOMI, 122, "Nauka", Leningrad. Otdel., Leningrad, 1982, 135–136

Citation in format AMSBIB
\Bibitem{Tur82}
\by V.~G.~Turaev
\paper Nielsen numbers and fixed points of self-mappings of wedges of circles
\inbook Investigations in topology. Part~IV
\serial Zap. Nauchn. Sem. LOMI
\yr 1982
\vol 122
\pages 135--136
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4092}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=661472}
\zmath{https://zbmath.org/?q=an:0492.55002}


Linking options:
  • http://mi.mathnet.ru/eng/znsl4092
  • http://mi.mathnet.ru/eng/znsl/v122/p135

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. A. Bogatyi, D. L. Gonçalves, H. Zieschang, “Coincidence Theory: The Minimizing Problem”, Proc. Steklov Inst. Math., 225 (1999), 45–77  mathnet  mathscinet  zmath
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:86
    Full text:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020