Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. LOMI, 1984, Volume 133, Pages 177–196 (Mi znsl4418)  

This article is cited in 5 scientific papers (total in 5 papers)

Algebro-topological approach to reality problems. Real action variables in the theory of finite-gap solutions of the Sine-Gordon equations

S. P. Novikov


Abstract: The paper developes an algebro-topological approach to the problem of effective selection of real finite gap solutions of the sine-Gordon equation, based on the so-called $\gamma$-representation associated with a Riemann surface where action variables can be written in a closed form. The approach is a general one and applies to many other systems for which the reality problem has not yet been solved.

Full text: PDF file (1025 kB)

Bibliographic databases:
UDC: 519.4

Citation: S. P. Novikov, “Algebro-topological approach to reality problems. Real action variables in the theory of finite-gap solutions of the Sine-Gordon equations”, Differential geometry, Lie groups and mechanics. Part VI, Zap. Nauchn. Sem. LOMI, 133, "Nauka", Leningrad. Otdel., Leningrad, 1984, 177–196

Citation in format AMSBIB
\Bibitem{Nov84}
\by S.~P.~Novikov
\paper Algebro-topological approach to reality problems. Real action variables in the theory of finite-gap solutions of the Sine-Gordon equations
\inbook Differential geometry, Lie groups and mechanics. Part~VI
\serial Zap. Nauchn. Sem. LOMI
\yr 1984
\vol 133
\pages 177--196
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl4418}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=742157}
\zmath{https://zbmath.org/?q=an:0546.35071}


Linking options:
  • http://mi.mathnet.ru/eng/znsl4418
  • http://mi.mathnet.ru/eng/znsl/v133/p177

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. D. Belokolos, A. I. Bobenko, V. B. Matveev, V. Z. Ènol'skii, “Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations”, Russian Math. Surveys, 41:2 (1986), 1–49  mathnet  crossref  mathscinet  zmath  isi
    2. B. A. Dubrovin, S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russian Math. Surveys, 44:6 (1989), 35–124  mathnet  crossref  mathscinet  zmath  adsnasa
    3. P. G. Grinevich, S. P. Novikov, “Real finite-zone solutions of the sine-Gordon equation: a formula for the topological charge”, Russian Math. Surveys, 56:5 (2001), 980–981  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. Yu. V. Brezhnev, “Finite-Band Potentials with Trigonal Curves”, Theoret. and Math. Phys., 133:3 (2002), 1657–1662  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. P. G. Grinevich, K. V. Kaipa, “Multiscale Limit for Finite-Gap Sine-Gordon Solutions and Calculation of Topological Charge Using Theta-Functional Formulae”, Proc. Steklov Inst. Math., 266 (2009), 49–58  mathnet  crossref  mathscinet  zmath  isi  elib  elib
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:137
    Full text:38

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021