RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2011, Volume 391, Pages 5–17 (Mi znsl4565)  

This article is cited in 2 scientific papers (total in 2 papers)

Bounds of a number of leaves of spanning trees in graphs without triangles

Bankevich A. V.

Saint-Petersburg State University, Saint-Petersburg, Russia

Abstract: We prove that for every connected graph with girth at least $4$ and $s$ vertices of degree not $2$ there is a spanning tree with at least $\frac13(s-2)+2$ leaves. We describe series of examples showing that this bound is tight. This result, together with the bound for graphs with no limit on the girth (in such graphs one can construct a spanning tree with at least $\frac14(s-2)+2$ leaves) leads to the hypothesis that for a graph with girth at least $g$, there exists a spanning tree with at least $\frac{g-2}{2g-2}(s-2)+2$ leaves. We prove that this conjecture fails for $g\ge10$ and the bound cannot exceed $\frac7{16}s+\frac12$.

Key words and phrases: spanning tree, leaves, number of leaves.

Full text: PDF file (235 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2012, 184:5, 557–563

Document Type: Article
UDC: 519.172.1
Received: 28.09.2011

Citation: Bankevich A. V., “Bounds of a number of leaves of spanning trees in graphs without triangles”, Combinatorics and graph theory. Part III, Zap. Nauchn. Sem. POMI, 391, POMI, St. Petersburg, 2011, 5–17; J. Math. Sci. (N. Y.), 184:5 (2012), 557–563

Citation in format AMSBIB
\Bibitem{Ban11}
\by Bankevich~A.~V.
\paper Bounds of a~number of leaves of spanning trees in graphs without triangles
\inbook Combinatorics and graph theory. Part~III
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 391
\pages 5--17
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4565}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 184
\issue 5
\pages 557--563
\crossref{https://doi.org/10.1007/s10958-012-0880-6}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884317032}


Linking options:
  • http://mi.mathnet.ru/eng/znsl4565
  • http://mi.mathnet.ru/eng/znsl/v391/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. V. Karpov, “Ostovnye derevya s bolshim kolichestvom visyachikh vershin: nizhnie otsenki cherez kolichestvo vershin stepenei 1, 3 i ne menee 4”, Kombinatorika i teoriya grafov. V, Zap. nauchn. sem. POMI, 406, POMI, SPb., 2012, 67–94  mathnet  mathscinet; D. V. Karpov, “Spanning trees with many leaves: lower bounds in terms of number of vertices of degree 1, 3 and at least 4”, J. Math. Sci. (N. Y.), 196:6 (2014), 768–783  crossref
    2. D. V. Karpov, “Nizhnie otsenki kolichestva listev v ostovnykh derevyakh”, Kombinatorika i teoriya grafov. VIII, Zap. nauchn. sem. POMI, 450, POMI, SPb., 2016, 62–73  mathnet  mathscinet
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:49
    Full text:15
    References:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017