RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2011, Volume 393, Pages 191–210 (Mi znsl4624)  

This article is cited in 3 scientific papers (total in 3 papers)

Propagation of normal waves in porous rod with closed pores on boundaries

L. A. Molotkov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Propagation of normal waves in porous cylindrical rod with closed pores on boundaries is investigated. For this medium the dispersion equation is derived. At low-frequency this equation has two roots which are velocities of the normal waves. While in the cases of elastic rod and of porous rod with opened pores there is unique low-frequence wave. At high-frequency the dispersion equation has one special root. With such velocity the Rayleigh wave propagates along free boundary of the porous medium with closed pores. In this case the Rayleigh wave can exist always.

Key words and phrases: porous rod, closed pores, two rod waves, the Rayleigh wave propagates always.

Full text: PDF file (247 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2012, 185:4, 619–629

Bibliographic databases:

Document Type: Article
UDC: 550.24
Received: 08.06.2011

Citation: L. A. Molotkov, “Propagation of normal waves in porous rod with closed pores on boundaries”, Mathematical problems in the theory of wave propagation. Part 41, Zap. Nauchn. Sem. POMI, 393, POMI, St. Petersburg, 2011, 191–210; J. Math. Sci. (N. Y.), 185:4 (2012), 619–629

Citation in format AMSBIB
\Bibitem{Mol11}
\by L.~A.~Molotkov
\paper Propagation of normal waves in porous rod with closed pores on boundaries
\inbook Mathematical problems in the theory of wave propagation. Part~41
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 393
\pages 191--210
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4624}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2870213}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 185
\issue 4
\pages 619--629
\crossref{https://doi.org/10.1007/s10958-012-0946-5}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866543694}


Linking options:
  • http://mi.mathnet.ru/eng/znsl4624
  • http://mi.mathnet.ru/eng/znsl/v393/p191

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. A. Molotkov, “Normal waves in porous layer with opened pores on one boundary and with closed pores on other boundary”, J. Math. Sci. (N. Y.), 185:4 (2012), 611–618  mathnet  crossref  mathscinet
    2. L. A. Molotkov, “Propagation of normal waves in porous rod with opened pores on boundaries”, J. Math. Sci. (N. Y.), 185:4 (2012), 630–637  mathnet  crossref  mathscinet
    3. G. L. Zavorokhin, “The wave field of a point source that acts on the impermeable stress free boundary of a Biot half-plane”, J. Math. Sci. (N. Y.), 226:6 (2017), 727–733  mathnet  crossref  mathscinet
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:94
    Full text:28
    References:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019