RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2011, Volume 393, Pages 211–223 (Mi znsl4625)  

This article is cited in 2 scientific papers (total in 2 papers)

Propagation of normal waves in porous rod with opened pores on boundaries

L. A. Molotkov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Propagation of normal waves in porous cylindrical rod with opened pores on boundaries is investigated. For this medium the dispersion equation is derived. At low-frequency this equation has one root which is velocity of a normal wave. While in the case of porous rod with closed pores there are two low-frequency waves. At high-frequency the dispersion equation can have in specific parameters one root. With such velocity the Rayleigh wave propagates along free boundary of porous medium with opened pores. The indicated root can be absent. In this case the Rayleigh wave is absent.

Key words and phrases: porous rod, opened pores, unique rod wave, the Rayleigh wave can be absen.

Full text: PDF file (198 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2012, 185:4, 630–637

Bibliographic databases:

Document Type: Article
UDC: 550.24
Received: 08.06.2011

Citation: L. A. Molotkov, “Propagation of normal waves in porous rod with opened pores on boundaries”, Mathematical problems in the theory of wave propagation. Part 41, Zap. Nauchn. Sem. POMI, 393, POMI, St. Petersburg, 2011, 211–223; J. Math. Sci. (N. Y.), 185:4 (2012), 630–637

Citation in format AMSBIB
\Bibitem{Mol11}
\by L.~A.~Molotkov
\paper Propagation of normal waves in porous rod with opened pores on boundaries
\inbook Mathematical problems in the theory of wave propagation. Part~41
\serial Zap. Nauchn. Sem. POMI
\yr 2011
\vol 393
\pages 211--223
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4625}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2870214}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2012
\vol 185
\issue 4
\pages 630--637
\crossref{https://doi.org/10.1007/s10958-012-0947-4}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866559577}


Linking options:
  • http://mi.mathnet.ru/eng/znsl4625
  • http://mi.mathnet.ru/eng/znsl/v393/p211

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. A. Molotkov, “Propagation of normal waves in porous rod with closed pores on boundaries”, J. Math. Sci. (N. Y.), 185:4 (2012), 619–629  mathnet  crossref  mathscinet
    2. G. L. Zavorokhin, “The wave field of a point source that acts on the impermeable stress free boundary of a Biot half-plane”, J. Math. Sci. (N. Y.), 226:6 (2017), 727–733  mathnet  crossref  mathscinet
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:90
    Full text:34
    References:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019