RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2007, Volume 349, Pages 5–29 (Mi znsl52)  

This article is cited in 4 scientific papers (total in 4 papers)

On subgroups of symplectic group containing a subsystem subgroup

N. A. Vavilov

Saint-Petersburg State University

Abstract: Let $\Gamma=\operatorname{GSp}(2l,R)$ be the general symplectic group of rank $l$ over a commutative ring $R$ such, that $2\in R^*$, and $\nu$ be a symmetric equivalence relation on the index set $\{1,\ldots,l,-l,\ldots,1\}$, all of whose classes contain at least 3 elements. In the present paper we prove that if a subgroup $H$ of $\Gamma$ contains the group $E_{\Gamma}(\nu)$ of elementary block diagonal matrices of type $\nu$, then $H$ normalises the subgroup generated by all elementary symplectic transvections $T_{ij}(\xi)\in H$. Combined with the previous results, this completely describes overgroups of subsystem subgroups in this case. Similar results for subgroups of $\operatorname{GL}(n,R)$ were established by Z. I. Borewicz and the author in early 1980-ies, while for $\operatorname{GSp}(2l,R)$ and $\operatorname{GO}(n,R)$ they have been announced by the author in late 1980-ies, but the complete proof for the symplectic case has not been published before.

Full text: PDF file (299 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2008, 151:3, 2937–2948

Bibliographic databases:

UDC: 513.6
Received: 20.06.2007

Citation: N. A. Vavilov, “On subgroups of symplectic group containing a subsystem subgroup”, Problems in the theory of representations of algebras and groups. Part 16, Zap. Nauchn. Sem. POMI, 349, POMI, St. Petersburg, 2007, 5–29; J. Math. Sci. (N. Y.), 151:3 (2008), 2937–2948

Citation in format AMSBIB
\Bibitem{Vav07}
\by N.~A.~Vavilov
\paper On subgroups of symplectic group containing a~subsystem subgroup
\inbook Problems in the theory of representations of algebras and groups. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 349
\pages 5--29
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl52}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2742852}
\elib{http://elibrary.ru/item.asp?id=13077201}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2008
\vol 151
\issue 3
\pages 2937--2948
\crossref{https://doi.org/10.1007/s10958-008-9020-8}
\elib{http://elibrary.ru/item.asp?id=13581263}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-49249101527}


Linking options:
  • http://mi.mathnet.ru/eng/znsl52
  • http://mi.mathnet.ru/eng/znsl/v349/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. S. Ananyevskiy, N. A. Vavilov, S. S. Sinchuk, “Overgroups of $E(m,R)\otimes E(n,R)$. I”, St. Petersburg Math. J., 23:5 (2012), 819–849  mathnet  crossref  mathscinet  isi  elib  elib
    2. N. A. Vavilov, A. A. Semenov, “Long root tori in Chevalley groups”, St. Petersburg Math. J., 24:3 (2013), 387–430  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    3. N. A. Vavilov, A. V. Shchegolev, “Overgroups of subsystem subgroups in exceptional groups: levels”, J. Math. Sci. (N. Y.), 192:2 (2013), 164–195  mathnet  crossref  mathscinet
    4. A. V. Shchegolev, “Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results”, J. Math. Sci. (N. Y.), 222:4 (2017), 516–523  mathnet  crossref  mathscinet
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:165
    Full text:61
    References:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018