RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. LOMI, 1985, Volume 144, Pages 94–114 (Mi znsl5303)  

On extremal problems in classes of univalent functions which do not assume given values

E. G. Emel'yanov, G. V. Kuz'mina


Abstract: Section 1 of the paper is devoted to extremal problems in the classes of conformal homeomorphisms of the circle and the annulus, connected directly with the problem on the maximum of the conformal modulus in the family of doubly connected domains. In Secs. 2 and 3 one considers the class $R$ of functions $f(\zeta)=c_1\zeta+c_2\zeta^2+\dotsb$ regular and univalent in the circle $U=\{|\zeta|<1\}$ and such that $f(\zeta_1)f(\zeta_2)=1$ for $\zeta_1,\zeta_2\in U$ (the class of Bieberbach–Eilenberg functions). Here one solves the problem of the maximum of $|f^\prime(\zeta_0)|$ in the class of functions $f(\zeta)\in R$ with a fixed value $f(\zeta_0)$, where $\zeta_0$ is an arbitrary point $U$, and of the maximum of $|f^\prime(\zeta_0)|$ in the entire class $R$. For the proof one makes use of the method of the moduli of families of curves.

Full text: PDF file (918 kB)

Bibliographic databases:

Document Type: Article
UDC: 517.54

Citation: E. G. Emel'yanov, G. V. Kuz'mina, “On extremal problems in classes of univalent functions which do not assume given values”, Analytical theory of numbers and theory of functions. Part 6, Zap. Nauchn. Sem. LOMI, 144, "Nauka", Leningrad. Otdel., Leningrad, 1985, 94–114

Citation in format AMSBIB
\Bibitem{EmeKuz85}
\by E.~G.~Emel'yanov, G.~V.~Kuz'mina
\paper On extremal problems in classes of univalent functions which do not assume given values
\inbook Analytical theory of numbers and theory of functions. Part~6
\serial Zap. Nauchn. Sem. LOMI
\yr 1985
\vol 144
\pages 94--114
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5303}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=787417}
\zmath{https://zbmath.org/?q=an:0577.30020}


Linking options:
  • http://mi.mathnet.ru/eng/znsl5303
  • http://mi.mathnet.ru/eng/znsl/v144/p94

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:65
    Full text:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019