RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2012, Volume 400, Pages 70–126 (Mi znsl5612)  

This article is cited in 1 scientific paper (total in 1 paper)

Overgroups of subsystem subgroups in exceptional groups: levels

N. A. Vavilov, A. V. Shchegolev

Saint-Petersburg State University, Saint-Petersburg, Russia

Abstract: An embedding of root systems $\Delta\subseteq\Phi$ determines the corresponding regular embedding $G(\Delta,R)\le G(\Phi,R)$ of Chevalley groups, over an arbitrary commutative ring $R$. Denote by $E(\Delta,R)$ the elementary subgroup of $G(\Delta,R)$. In the present paper we initiate the study of intermediate subgroups $H$, $E(\Delta,R)\le H\le G(\Phi,R)$, provided that $\Phi=\mathrm{E_6,E_7,E_8,F}_4$ or $\mathrm G_2$, and there are no roots in $\Phi$ orthogonal to all of $\Delta$. There are 72 such pairs $(\Phi,\Delta)$. For $\mathrm F_4$ and $\mathrm G_2$ we assume, moreover, that $2\in R^*$ or $6\in R^*$, respectively. For all such subsystems $\Delta$ we construct the levels of intermediate subgroups. We prove that these levels are detemined by certain systems of ideals in $R$, one for each $\Delta$-equivalence class of roots in $\Phi\setminus\Delta$, and calculate all relations among these ideals, in each case.

Key words and phrases: exceptional Chevalley groups, subsystem subgroups, levels, root elements, Chevalley commutator formula, shapes of roots.

Full text: PDF file (541 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2013, 192:2, 164–195

Bibliographic databases:

Document Type: Article
UDC: 513.6
Received: 10.06.2011

Citation: N. A. Vavilov, A. V. Shchegolev, “Overgroups of subsystem subgroups in exceptional groups: levels”, Problems in the theory of representations of algebras and groups. Part 23, Zap. Nauchn. Sem. POMI, 400, POMI, St. Petersburg, 2012, 70–126; J. Math. Sci. (N. Y.), 192:2 (2013), 164–195

Citation in format AMSBIB
\Bibitem{VavShc12}
\by N.~A.~Vavilov, A.~V.~Shchegolev
\paper Overgroups of subsystem subgroups in exceptional groups: levels
\inbook Problems in the theory of representations of algebras and groups. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 400
\pages 70--126
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5612}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3029566}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 192
\issue 2
\pages 164--195
\crossref{https://doi.org/10.1007/s10958-013-1382-x}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884989403}


Linking options:
  • http://mi.mathnet.ru/eng/znsl5612
  • http://mi.mathnet.ru/eng/znsl/v400/p70

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. A. Vavilov, “Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after”, Voprosy teorii predstavlenii algebr i grupp. 27, Zap. nauchn. sem. POMI, 430, POMI, SPb., 2014, 32–52  mathnet  mathscinet
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:170
    Full text:53
    References:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017