RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2012, Volume 400, Pages 215–221 (Mi znsl5620)  

On canonical bases of spaces with a well ordered basis and a distinguished family of subspaces

A. V. Yakovlev

Saint-Petersburg State University, Saint-Petersburg, Russia

Abstract: Let $V$ be a vector space with a well ordered basis and $\mathfrak I$ a family of subspaces of $V$ closed under intersections. An analogue of Groebner basis is defined for subspaces from $\mathfrak I$. It is shown that in Noetherian case such basis always exists and is unique.

Key words and phrases: Groebner basis.

Full text: PDF file (159 kB)

English version:
Journal of Mathematical Sciences (New York), 2013, 192:2, 247–249

Bibliographic databases:

UDC: 512.55
Received: 28.02.2012

Citation: A. V. Yakovlev, “On canonical bases of spaces with a well ordered basis and a distinguished family of subspaces”, Problems in the theory of representations of algebras and groups. Part 23, Zap. Nauchn. Sem. POMI, 400, POMI, St. Petersburg, 2012, 215–221; J. Math. Sci. (N. Y.), 192:2 (2013), 247–249

Citation in format AMSBIB
\Bibitem{Yak12}
\by A.~V.~Yakovlev
\paper On canonical bases of spaces with a~well ordered basis and a~distinguished family of subspaces
\inbook Problems in the theory of representations of algebras and groups. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 400
\pages 215--221
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5620}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3029574}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 192
\issue 2
\pages 247--249
\crossref{https://doi.org/10.1007/s10958-013-1390-x}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884975464}


Linking options:
  • http://mi.mathnet.ru/eng/znsl5620
  • http://mi.mathnet.ru/eng/znsl/v400/p215

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:119
    Full text:38

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020