RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2014, Volume 422, Pages 90–130 (Mi znsl5765)  

Gap opening around a given point of the spectrum of a cylindrical waveguide by means of gentle periodic perturbation of walls

S. A. Nazarovab

a St. Petersburg State University, St. Petersburg, Russia
b Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We discuss one of the main questions in band-gap engineering, namely by an asymptotic analysis it is proven that any given point of a certain interval in the spectrum of a cylindrical waveguide can be surrounded with a spectral gap by means of a periodical perturbation of the walls. Both the Dirichlet and Neumann boundary conditions for the Laplace operator are considered in planar and multi-dimensional waveguides.

Key words and phrases: Dirichlet and Neumann spectral problems for Laplace operator, periodic wave guide, lacuna, uncoupling of spectral segments.

Full text: PDF file (428 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2015, 206:3, 288–314

UDC: 517.956.8+517.958+539.3(2)
Received: 02.12.2013

Citation: S. A. Nazarov, “Gap opening around a given point of the spectrum of a cylindrical waveguide by means of gentle periodic perturbation of walls”, Mathematical problems in the theory of wave propagation. Part 43, Zap. Nauchn. Sem. POMI, 422, POMI, St. Petersburg, 2014, 90–130; J. Math. Sci. (N. Y.), 206:3 (2015), 288–314

Citation in format AMSBIB
\Bibitem{Naz14}
\by S.~A.~Nazarov
\paper Gap opening around a~given point of the spectrum of a~cylindrical waveguide by means of gentle periodic perturbation of walls
\inbook Mathematical problems in the theory of wave propagation. Part~43
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 422
\pages 90--130
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5765}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 206
\issue 3
\pages 288--314
\crossref{https://doi.org/10.1007/s10958-015-2312-x}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953359433}


Linking options:
  • http://mi.mathnet.ru/eng/znsl5765
  • http://mi.mathnet.ru/eng/znsl/v422/p90

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:218
    Full text:86
    References:40

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019