Записки научных семинаров ПОМИ
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Зап. научн. сем. ПОМИ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Зап. научн. сем. ПОМИ, 2014, том 423, страницы 244–263 (Mi znsl6006)  

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

Неабелева $K$-теория групп Шевалле над кольцами

А. В. Степановab

a Санкт-Петербургский государственный электротехнический университет "ЛЭТИ"
b Математико-механический факультет Санкт-Петербургского государственного университета

Аннотация: В настоящей работе дан обзор результатов о строении группы Шевалле $G(R)$ над кольцом $R$, полученных автором в последнее время. Мы обобщаем и улучшаем следующие результаты: (1) относительный локально-глобальный принцип; (2) образующие относительной элементарной подгруппы; (3) относительные мульти-коммутационные формулы; (4) нильпотентная структура относительного $\mathrm K_1$; (5) ограниченность длины коммутаторов.
Доказательство первых двух пунктов происходит на основании вычислений с образующими элементарной группы, переведенными на язык параболических подгрупп. Для доказательства остальных результатов мы увеличиваем относительную элементарную группу, строим общий элемент и используем метод локализации в универсальном кольце. Библ. – 40 назв.

Ключевые слова: группы Шевалле, главная конгруэнц-подгруппа, локально-глобальный принцип, коммутационные формулы, элементарная подгруппа, ширина коммутаторов.

Полный текст: PDF файл (268 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Journal of Mathematical Sciences (New York), 2015, 209:4, 645–656

Реферативные базы данных:

Тип публикации: Статья
УДК: 512.5
Поступило: 02.12.2013

Образец цитирования: А. В. Степанов, “Неабелева $K$-теория групп Шевалле над кольцами”, Вопросы теории представлений алгебр и групп. 26, Зап. научн. сем. ПОМИ, 423, ПОМИ, СПб., 2014, 244–263; J. Math. Sci. (N. Y.), 209:4 (2015), 645–656

Цитирование в формате AMSBIB
\RBibitem{Ste14}
\by А.~В.~Степанов
\paper Неабелева $K$-теория групп Шевалле над кольцами
\inbook Вопросы теории представлений алгебр и групп.~26
\serial Зап. научн. сем. ПОМИ
\yr 2014
\vol 423
\pages 244--263
\publ ПОМИ
\publaddr СПб.
\mathnet{http://mi.mathnet.ru/znsl6006}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3480699}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 209
\issue 4
\pages 645--656
\crossref{https://doi.org/10.1007/s10958-015-2518-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943358367}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/znsl6006
  • http://mi.mathnet.ru/rus/znsl/v423/p244

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. R. Hazrat, N. Vavilov, Z. Zhang, “The commutators of classical groups”, Вопросы теории представлений алгебр и групп. 29, Зап. научн. сем. ПОМИ, 443, ПОМИ, СПб., 2016, 151–221  mathnet  mathscinet; J. Math. Sci. (N. Y.), 222:4 (2017), 466–515  crossref
    2. N. Vavilov, “Unrelativised standard commutator formula”, Вопросы теории представлений алгебр и групп. 33, Зап. научн. сем. ПОМИ, 470, ПОМИ, СПб., 2018, 38–49  mathnet; J. Math. Sci. (N. Y.), 243:4 (2019), 527–534  crossref
    3. N. Vavilov, “Commutators of congruence subgroups in the arithmetic case”, Алгебра и теория чисел. 2, Зап. научн. сем. ПОМИ, 479, ПОМИ, СПб., 2019, 5–22  mathnet
    4. N. Vavilov, Z. Zhang, “Commutators of relative and unrelative elementary groups, revisited”, Теория представлений, динамические системы, комбинаторные методы. XXXI, Зап. научн. сем. ПОМИ, 485, ПОМИ, СПб., 2019, 58–71  mathnet
    5. N. Vavilov, Z. Zhang, “Commutators of relative and unrelative elementary unitary groups”, Алгебра и анализ, 34:1 (2022), 61–104  mathnet
  • Записки научных семинаров ПОМИ
    Просмотров:
    Эта страница:137
    Полный текст:37
    Литература:36
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2022