RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2014, Volume 430, Pages 32–52 (Mi znsl6081)  

This article is cited in 1 scientific paper (total in 1 paper)

Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after

N. A. Vavilov

St. Petersburg State University

Abstract: In this paper I sketch two new variations of the method of decomposition of unipotents in the microweight representations $(\mathrm E_6,\varpi_1)$ and $(\mathrm E_7,\varpi_7)$. To put them in context, I first very briefly recall the two previous stages of the method, an $\mathrm A_5$-proof for $\mathrm E_6$ and an $\mathrm A_7$-proof for $\mathrm E_7$, first developed some 25 years ago by Alexei Stepanov, Eugene Plotkin and myself (a definitive exposition was given in my paper “A thirdlook at weight diagrams”), and an $\mathrm A_2$-proof for $\mathrm E_6$ and $\mathrm E_7$ developed by Mikhail Gavrilovich and myself in early 2000. The first new twist outlined in this paper is an observation that the $\mathrm A_2$-proof actually effectuates reduction to small parabolics, of corank 3 in $\mathrm E_6$ and of corank 5 in $\mathrm E_7$. This allows to revamp proofs and sharpen existing bounds in many applications. The second new variation is a $\mathrm D_5$-proof for $\mathrm E_6$, based on stabilisation of columns with one zero. [I devised also a similar $\mathrm D_6$-proof for $\mathrm E_7$, based on stabilisation of columns with two adjacent zeroes, but it is too abstruse to be included in a casual exposition.] Also, I list several further variations. Actual detailed calculations will appear in my paper “A closer look at weight diagrams of types $(\mathrm E_6,\varpi_1)$ and $(\mathrm E_7,\varpi_7)$”.

Key words and phrases: Chevalley groups, elementary subgroups, exceptional groups, microweight representation, decomposition of unipotents, parabolic subgroups, highest weight orbit.

Full text: PDF file (269 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
UDC: 512.5
Received: 01.12.2014
Language: English

Citation: N. A. Vavilov, “Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after”, Problems in the theory of representations of algebras and groups. Part 27, Zap. Nauchn. Sem. POMI, 430, POMI, St. Petersburg, 2014, 32–52

Citation in format AMSBIB
\Bibitem{Vav14}
\by N.~A.~Vavilov
\paper Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25~years after
\inbook Problems in the theory of representations of algebras and groups. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 430
\pages 32--52
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6081}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3486760}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6081
  • http://mi.mathnet.ru/eng/znsl/v430/p32

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Petrov, “Razlozhenie transvektsii: algebro-geometricheskii podkhod”, Algebra i analiz, 28:1 (2016), 150–157  mathnet  mathscinet  elib; V. A. Petrov, “Decomposition of transvections: an algebro-geometric approach”, St. Petersburg Math. J., 28:1 (2017), 109–114  crossref  isi
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:206
    Full text:64
    References:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017