General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Zap. Nauchn. Sem. POMI:

Personal entry:
Save password
Forgotten password?

Zap. Nauchn. Sem. POMI, 2014, Volume 430, Pages 32–52 (Mi znsl6081)  

This article is cited in 2 scientific papers (total in 2 papers)

Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after

N. A. Vavilov

St. Petersburg State University

Abstract: In this paper I sketch two new variations of the method of decomposition of unipotents in the microweight representations $(\mathrm E_6,\varpi_1)$ and $(\mathrm E_7,\varpi_7)$. To put them in context, I first very briefly recall the two previous stages of the method, an $\mathrm A_5$-proof for $\mathrm E_6$ and an $\mathrm A_7$-proof for $\mathrm E_7$, first developed some 25 years ago by Alexei Stepanov, Eugene Plotkin and myself (a definitive exposition was given in my paper “A thirdlook at weight diagrams”), and an $\mathrm A_2$-proof for $\mathrm E_6$ and $\mathrm E_7$ developed by Mikhail Gavrilovich and myself in early 2000. The first new twist outlined in this paper is an observation that the $\mathrm A_2$-proof actually effectuates reduction to small parabolics, of corank 3 in $\mathrm E_6$ and of corank 5 in $\mathrm E_7$. This allows to revamp proofs and sharpen existing bounds in many applications. The second new variation is a $\mathrm D_5$-proof for $\mathrm E_6$, based on stabilisation of columns with one zero. [I devised also a similar $\mathrm D_6$-proof for $\mathrm E_7$, based on stabilisation of columns with two adjacent zeroes, but it is too abstruse to be included in a casual exposition.] Also, I list several further variations. Actual detailed calculations will appear in my paper “A closer look at weight diagrams of types $(\mathrm E_6,\varpi_1)$ and $(\mathrm E_7,\varpi_7)$”.

Key words and phrases: Chevalley groups, elementary subgroups, exceptional groups, microweight representation, decomposition of unipotents, parabolic subgroups, highest weight orbit.

Full text: PDF file (269 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2016, 219:3, 355–369

Bibliographic databases:

Document Type: Article
UDC: 512.5
Received: 01.12.2014
Language: English

Citation: N. A. Vavilov, “Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after”, Problems in the theory of representations of algebras and groups. Part 27, Zap. Nauchn. Sem. POMI, 430, POMI, St. Petersburg, 2014, 32–52; J. Math. Sci. (N. Y.), 219:3 (2016), 355–369

Citation in format AMSBIB
\by N.~A.~Vavilov
\paper Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25~years after
\inbook Problems in the theory of representations of algebras and groups. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 430
\pages 32--52
\publ POMI
\publaddr St.~Petersburg
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 219
\issue 3
\pages 355--369

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Petrov, “Decomposition of transvections: an algebro-geometric approach”, St. Petersburg Math. J., 28:1 (2017), 109–114  mathnet  crossref  mathscinet  isi  elib
    2. N. A. Vavilov, “Towards the reverse decomposition of unipotents”, Voprosy teorii predstavlenii algebr i grupp. 33, Zap. nauchn. sem. POMI, 470, POMI, SPb., 2018, 21–37  mathnet
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:257
    Full text:77

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019