RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2015, Volume 432, Pages 30–35 (Mi znsl6108)  

On Pinsker factors for Rokhlin entropy

A. V. Alpeev

Chebyshev Laboratory at St. Petersburg State University, St. Petersburg 199178, Russia

Abstract: In this paper we prove that any dynamical system has a unique maximal factor of zero Rokhlin entropy, the so-called Pinsker factor. It is also proven that if the system is ergodic and this factor has no atoms, then the system is a relatively weakly mixing extension of its Pinsker factor.

Key words and phrases: Pinsker factor, Rokhlin entropy, generating partition, relatively weakly mixing extension.

Full text: PDF file (153 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2015, 209:6, 826–829

UDC: 513.5
Received: 10.01.2015
Language:

Citation: A. V. Alpeev, “On Pinsker factors for Rokhlin entropy”, Representation theory, dynamical systems, combinatorial methods. Part XXIV, Zap. Nauchn. Sem. POMI, 432, POMI, St. Petersburg, 2015, 30–35; J. Math. Sci. (N. Y.), 209:6 (2015), 826–829

Citation in format AMSBIB
\Bibitem{Alp15}
\by A.~V.~Alpeev
\paper On Pinsker factors for Rokhlin entropy
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXIV
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 432
\pages 30--35
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6108}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 209
\issue 6
\pages 826--829
\crossref{https://doi.org/10.1007/s10958-015-2529-8}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939424824}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6108
  • http://mi.mathnet.ru/eng/znsl/v432/p30

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:82
    Full text:24
    References:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019