RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2015, Volume 433, Pages 65–77 (Mi znsl6127)  

This article is cited in 1 scientific paper (total in 1 paper)

Time-dependent correlation functions for a bimodal Bose–Hubbard model

N. M. Bogoliubovab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia

Abstract: The bimodal Bose–Hubbard model is studied. The application of the Quantum Inverse Method allows to calculate the time-dependent correlation functions of the model. Form-factors of the bosonic creation and annihilation operators in the wells are expressed in the determinantal form.

Key words and phrases: Quantum Inverse Method, time-dependent correlation functions, Bose–Hubbard model.

Funding Agency Grant Number
Russian Science Foundation 14-11-00598
Partially supported by the RSF (grant 14-11-00598).


Full text: PDF file (195 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2016, 213:5, 662–670

Bibliographic databases:

UDC: 517.9
Received: 18.03.2015

Citation: N. M. Bogoliubov, “Time-dependent correlation functions for a bimodal Bose–Hubbard model”, Questions of quantum field theory and statistical physics. Part 23, Zap. Nauchn. Sem. POMI, 433, POMI, St. Petersburg, 2015, 65–77; J. Math. Sci. (N. Y.), 213:5 (2016), 662–670

Citation in format AMSBIB
\Bibitem{Bog15}
\by N.~M.~Bogoliubov
\paper Time-dependent correlation functions for a~bimodal Bose--Hubbard model
\inbook Questions of quantum field theory and statistical physics. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 433
\pages 65--77
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6127}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3493680}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 213
\issue 5
\pages 662--670
\crossref{https://doi.org/10.1007/s10958-016-2730-4}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957680685}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6127
  • http://mi.mathnet.ru/eng/znsl/v433/p65

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. Ermakov, T. Byrnes, N. Bogoliubov, “High-accuracy energy formulas for the attractive two-site Bose-Hubbard model”, Phys. Rev. A, 97:2 (2018), 023626  crossref  isi  scopus
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:113
    Full text:22
    References:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019