RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2015, Volume 433, Pages 111–130 (Mi znsl6129)  

The discrete spectrum of Jacobi matrix related to recurrence relations with periodic coefficients

V. V. Borzova, E. V. Damaskinskyb

a St. Petersburg State University of Telecommunications, St. Petersburg, Russia
b Military Technical Institute, St. Petersburg, Russia

Abstract: In this note we investigate the discrete spectrum of Jacobi matrix corresponding to polynomials defined by recurrence relations with periodic coefficients. As examples we consider
a) the case when period $N$ of coefficients of recurrence relations equals three (as a particular case we consider “parametric” Chebyshev polynomials introduced by authors early);
b) the elementary $N$-symmetrical Chebyshev polynomials ($N=3,4,5$), that was introduced by authors in the study of the “composite model of generalized oscillator”.

Full text: PDF file (236 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2016, 213:5, 694–705

Bibliographic databases:

UDC: 517.9
Received: 11.03.2015

Citation: V. V. Borzov, E. V. Damaskinsky, “The discrete spectrum of Jacobi matrix related to recurrence relations with periodic coefficients”, Questions of quantum field theory and statistical physics. Part 23, Zap. Nauchn. Sem. POMI, 433, POMI, St. Petersburg, 2015, 111–130; J. Math. Sci. (N. Y.), 213:5 (2016), 694–705

Citation in format AMSBIB
\Bibitem{BorDam15}
\by V.~V.~Borzov, E.~V.~Damaskinsky
\paper The discrete spectrum of Jacobi matrix related to recurrence relations with periodic coefficients
\inbook Questions of quantum field theory and statistical physics. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 433
\pages 111--130
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6129}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3493682}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 213
\issue 5
\pages 694--705
\crossref{https://doi.org/10.1007/s10958-016-2732-2}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957707945}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6129
  • http://mi.mathnet.ru/eng/znsl/v433/p111

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:104
    Full text:21
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019