RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Зап. научн. сем. ПОМИ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Зап. научн. сем. ПОМИ, 2015, том 437, страницы 35–61 (Mi znsl6172)  

Ortogonal pairs and mutually unbiased bases

[Ортогональные пары и взаимно-несмещенные базисы]

A. Bondalabcd, I. Zhdanovskiyec

a Steklov Institute of Mathematics, Moscow, Russia
b Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
c HSE Laboratory of Algebraic Geometry, Moscow, Russia
d The Institute of Fundamental Science, Moscow, Russia
e Moscow Institute of Physics and Technology

Аннотация: Данная работа посвящена изучению близких друг другу математического и физического обьектов: ортогональных пар в $\mathrm{sl}(n)$ и взаимно-несмещенных базисов в $\mathbb C^n$. Математический обьект – это пара картановских подалгебр в алгебре Ли $\mathrm{sl}(n)$, ортогональных относительно формы Киллинга. Описание ортогональных пар – важный шаг к решению открытой проблемы классификации разложений алгебры Ли $\mathrm{sl}(n)$ в прямую сумму ортогональных (в смысле формы Киллинга) картановских подалгебр. С другой стороны, одним из важных понятий квантовой механики, квантовой теории информации и квантовой телепортации являются взаимно-несмещенные базисы. А именно, взаимно-несмещенные базисы в эрмитовом пространстве $\mathbb C^n$ – это пара базисов $\{e_i\}^n_{i=1}$, $\{f_j\}^n_{j=1}$, таких, что $|\langle e_i|f_j\rangle|^2=\frac1n$ для любых $i,j=1,\ldots,n$. Понятия ортогональных пар в $\mathrm{sl}(n)$ и взаимно-несмещенных базисов в $\mathbb C^n$ очень близки друг к другу. На настоящий момент проблемы классификации ортогональных пар в $\mathrm{sl}(n)$ и взаимно-несмещенных базисов в $\mathbb C^n$ открыты даже для случая $n=6$. В работе мы даем обзор нашего доказательства существования комплексного четырехмерного семейства ортогональных пар в $\mathrm{sl}(6)$. В этом доказательстве сильно используются методы теории представлений и алгебраической геометрии. Как следствие из этого результата получается существование семейства взаимно-несмещенных базисов в $\mathbb C^6$, параметризованного четырьмя действительными параметрами, что решает достаточно давно стоящую гипотезу. Библ. – 24 назв.

Ключевые слова: ортогональные пары, взаимно-несмещенные базисы, комплексно-адамаровы матрицы, обобщенно-адамаровы матрицы.

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 13-01-00234
14-01-00416
15-51-50045
Министерство образования и науки Российской Федерации
This work was done during the authors' visit to the Kavli IPMU and was supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. The reported study was partially supported by the RFBR, research projects 13-01-00234, 14-01-00416, and 15-51-50045. The article was prepared within the framework of a subsidy granted to the HSE by the Government of the Russian Federation for the implementation of the Global Competitiveness Program.


Полный текст: PDF файл (292 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Journal of Mathematical Sciences (New York), 2016, 216:1, 23–40

Реферативные базы данных:

ArXiv: 1510.05317
Тип публикации: Статья
УДК: 512.812+512.552+512.77+512.76
Поступило: 19.10.2015
Язык публикации: английский

Образец цитирования: A. Bondal, I. Zhdanovskiy, “Ortogonal pairs and mutually unbiased bases”, Теория представлений, динамические системы, комбинаторные методы. XXVI, Зап. научн. сем. ПОМИ, 437, ПОМИ, СПб., 2015, 35–61; J. Math. Sci. (N. Y.), 216:1 (2016), 23–40

Цитирование в формате AMSBIB
\RBibitem{BonZhd15}
\by A.~Bondal, I.~Zhdanovskiy
\paper Ortogonal pairs and mutually unbiased bases
\inbook Теория представлений, динамические системы, комбинаторные методы.~XXVI
\serial Зап. научн. сем. ПОМИ
\yr 2015
\vol 437
\pages 35--61
\publ ПОМИ
\publaddr СПб.
\mathnet{http://mi.mathnet.ru/znsl6172}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3499907}
\elib{http://elibrary.ru/item.asp?id=27153878}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 216
\issue 1
\pages 23--40
\crossref{https://doi.org/10.1007/s10958-016-2885-z}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969765228}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/znsl6172
  • http://mi.mathnet.ru/rus/znsl/v437/p35

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Просмотров:
    Эта страница:143
    Полный текст:44
    Литература:16

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019