RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2015, Volume 437, Pages 100–130 (Mi znsl6175)  

This article is cited in 2 scientific papers (total in 2 papers)

On ergodic decompositions related to the Kantorovich problem

D. A. Zaev

Department of Mathematics, National Research University "Higher School of Economics", Moscow, Russia

Abstract: Let $X$ be a Polish space, $\mathcal P(X)$ be the set of Borel probability measures on $X$, and $T\colon X\to X$ be a homeomorphism. We prove that for the simplex $\mathrm{Dom}\subseteq\mathcal P(X)$ of all $T$-invariant measures, the Kantorovich metric on $\mathrm{Dom}$ can be reconstructed from its values on the set of extreme points. This fact is closely related to the following result: the invariant optimal transportation plan is a mixture of invariant optimal transportation plans between extreme points of the simplex. The latter result can be generalized to the case of the Kantorovich problem with additional linear constraints and the class of ergodic decomposable simplices.

Key words and phrases: Kantorovich problem, ergodic decomposition, Markov kernel.

Full text: PDF file (309 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2016, 216:1, 65–83

Bibliographic databases:

UDC: 517.972
Received: 29.09.2015

Citation: D. A. Zaev, “On ergodic decompositions related to the Kantorovich problem”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Zap. Nauchn. Sem. POMI, 437, POMI, St. Petersburg, 2015, 100–130; J. Math. Sci. (N. Y.), 216:1 (2016), 65–83

Citation in format AMSBIB
\Bibitem{Zae15}
\by D.~A.~Zaev
\paper On ergodic decompositions related to the Kantorovich problem
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XXVI. Representation theory, dynamical systems, combinatorial methods
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 437
\pages 100--130
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6175}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3499910}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 216
\issue 1
\pages 65--83
\crossref{https://doi.org/10.1007/s10958-016-2888-9}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969791827}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6175
  • http://mi.mathnet.ru/eng/znsl/v437/p100

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Alexander V. Kolesnikov, Danila A. Zaev, “Exchangeable optimal transportation and log-concavity”, Theory Stoch. Process., 20(36):2 (2015), 54–62  mathnet  mathscinet  zmath
    2. A. V. Kolesnikov, D. A. Zaev, “Optimal transportation of processes with infinite Kantorovich distance: independence and symmetry”, Kyoto J. Math., 57:2 (2017), 293–324  crossref  mathscinet  zmath  isi  scopus
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:112
    Full text:29
    References:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020