RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2015, Volume 437, Pages 131–144 (Mi znsl6176)  

This article is cited in 2 scientific papers (total in 2 papers)

On a class of operator algebras generated by a family of partial isometries

A. Yu. Kuznetsova

Institute of Physics, Kazan (Volga region) Federal University, Kazan, Russia

Abstract: The paper provides a short overview of a series of articles devoted to the $C^*$-algebra generated by a self-mapping on a countable set. Such an algebra can be seen as a representation of the universal $C^*$-algebra generated by the family of partial isometries satisfying a set of conditions. These conditions are determined by the initial mapping.

Key words and phrases: $C^* $-algebra, partial isometry, covariant system, graded $C^*$-algebra.

Full text: PDF file (237 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2016, 216:1, 84–93

Bibliographic databases:

UDC: 517.98
Received: 10.10.2015

Citation: A. Yu. Kuznetsova, “On a class of operator algebras generated by a family of partial isometries”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXVI. Representation theory, dynamical systems, combinatorial methods, Zap. Nauchn. Sem. POMI, 437, POMI, St. Petersburg, 2015, 131–144; J. Math. Sci. (N. Y.), 216:1 (2016), 84–93

Citation in format AMSBIB
\Bibitem{Kuz15}
\by A.~Yu.~Kuznetsova
\paper On a~class of operator algebras generated by a~family of partial isometries
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XXVI. Representation theory, dynamical systems, combinatorial methods
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 437
\pages 131--144
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6176}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3499911}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 216
\issue 1
\pages 84--93
\crossref{https://doi.org/10.1007/s10958-016-2889-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969849502}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6176
  • http://mi.mathnet.ru/eng/znsl/v437/p131

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. A. Grigoryan, A. Yu. Kuznetsova, “$C^*$-algebras generated by mappings. Criterion of irreducibility”, Russian Math. (Iz. VUZ), 62:2 (2018), 7–18  mathnet  crossref  isi
    2. S. A. Grigoryan, A. Yu. Kuznetsova, “$C^*$-algebras generated by mappings. Classification of invariant subspaces”, Russian Math. (Iz. VUZ), 62:7 (2018), 13–30  mathnet  crossref  isi
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:130
    Full text:29
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020