RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2015, Volume 441, Pages 73–118 (Mi znsl6228)  

Criteria of divergence almost everywhere in ergodic theory

M. J. G. Weber

IRMA, Université Louis-Pasteur et C.N.R.S., 7 rue René Descartes, 67084 Strasbourg Cedex, France

Abstract: In this expository paper, we survey nowadays classical tools or criteria used in problems of convergence everywhere to build counterexamples: the Stein continuity principle, Bourgain's entropy criteria and Kakutani–Rochlin lemma, most classical device for these questions in ergodic theory. First, we state a $L^1$-version of the continuity principle and give an example of its usefulness by applying it to some famous problem on divergence almost everywhere of Fourier series. Next we particularly focus on entropy criteria in $L^p$, $2\le p\le\infty$, and provide detailed proofs. We also study the link between the associated maximal operators and the canonical Gaussian process on $L^2$. We further study the corresponding criterion in $L^p$, $1<p<2$, using properties of $p$-stable processes. Finally we consider Kakutani–Rochlin's lemma, one of the most frequently used tool in ergodic theory, by stating and proving a criterion for a.e. divergence of weighted ergodic averages.

Key words and phrases: Bourgain's entropy criteria, Stein's continuity principle, Gaussian process, stable process, metric entropy, GB set, GC set, Kakutani–Rochlin lemma.

Full text: PDF file (393 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2016, 219:5, 651–682

Bibliographic databases:

UDC: 519.2
Received: 12.11.2015
Language:

Citation: M. J. G. Weber, “Criteria of divergence almost everywhere in ergodic theory”, Probability and statistics. Part 22, Zap. Nauchn. Sem. POMI, 441, POMI, St. Petersburg, 2015, 73–118; J. Math. Sci. (N. Y.), 219:5 (2016), 651–682

Citation in format AMSBIB
\Bibitem{Web15}
\by M.~J.~G.~Weber
\paper Criteria of divergence almost everywhere in ergodic theory
\inbook Probability and statistics. Part~22
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 441
\pages 73--118
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6228}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3504500}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 219
\issue 5
\pages 651--682
\crossref{https://doi.org/10.1007/s10958-016-3137-y}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6228
  • http://mi.mathnet.ru/eng/znsl/v441/p73

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:56
    Full text:15
    References:14
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020