RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zap. Nauchn. Sem. POMI, 2015, Volume 441, Pages 210–238 (Mi znsl6235)  

Invariance, quasi-invariance and unimodularity for random graphs

V. A. Kaimanovich

Department of Mathematics and Statistics, University of Ottawa, 585 King Edward, Ottawa ON, K1N 6N5, Canada

Abstract: We interpret the probabilistic notion of unimodularity for measures on the space of rooted locally finite connected graphs in terms of the theory of measured equivalence relations. It turns out that the right framework for this consists in considering quasi-invariant (rather than just invariant) measures with respect to the root moving equivalence relation. We define a natural modular cocycle of this equivalence relation, and show that unimodular measures are precisely those quasi-invariant measures whose Radon–Nikodym cocycle coincides with the modular cocycle. This embeds the notion of unimodularity into the very general dynamical scheme of constructing and studying measures with a prescribed Radon–Nikodym cocycle.

Key words and phrases: random graph, space of rooted graphs, equivalence relation, unimodular measure, invariance, Radon–Nikodym cocycle.

Funding Agency Grant Number
Canada Research Chair
Natural Sciences and Engineering Research Council of Canada (NSERC) FP7/2007-2013
European Research Council 257110-RAWG


Full text: PDF file (331 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2016, 219:5, 747–764

Bibliographic databases:

UDC: 519
Received: 23.11.2015

Citation: V. A. Kaimanovich, “Invariance, quasi-invariance and unimodularity for random graphs”, Probability and statistics. Part 22, Zap. Nauchn. Sem. POMI, 441, POMI, St. Petersburg, 2015, 210–238; J. Math. Sci. (N. Y.), 219:5 (2016), 747–764

Citation in format AMSBIB
\Bibitem{Kai15}
\by V.~A.~Kaimanovich
\paper Invariance, quasi-invariance and unimodularity for random graphs
\inbook Probability and statistics. Part~22
\serial Zap. Nauchn. Sem. POMI
\yr 2015
\vol 441
\pages 210--238
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6235}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3504507}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 219
\issue 5
\pages 747--764
\crossref{https://doi.org/10.1007/s10958-016-3144-z}


Linking options:
  • http://mi.mathnet.ru/eng/znsl6235
  • http://mi.mathnet.ru/eng/znsl/v441/p210

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Записки научных семинаров ПОМИ
    Number of views:
    This page:82
    Full text:22
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019